首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《JSAE Review》1998,19(4):319-327
This study aimed to reduce NOx and soot by creating a more homogeneous lean fuel distribution in a diesel spray using high-pressure fuel injection and a micro-hole nozzle. This injection system shortened the ignition delay, but a homogeneous lean fuel distribution in the diesel spray was not achieved. Using a lower cetane number fuel, the resulting longer ignition delay made a uniform, lean fuel distribution in the diesel spray possible with this injection system. Ignition and combustion were analyzed by the combustion chamber pressure history, and flame temperatures and KL values were analyzed by the two-color method.  相似文献   

2.
Recent studies on dual-fuel combustion in compression-ignition (CI) engines, also known as diesel engines, fall into two categories. In the first category are studies focused on the addition of small amounts of gaseous fuel to CI engines. In these studies, gaseous fuel is regarded as a secondary fuel and diesel fuel is regarded as the main fuel for combustion. The objectives of these studies typically involve reducing particulate matter (PM) emissions by using gaseous fuel as a partial substitution for diesel fuel. However, the addition of gaseous fuel raises the combustion temperature, which increases emissions of nitrogen oxides (NOx). In the second category are studies focused on reactivity-controlled compression-ignition (RCCI) combustion. RCCI combustion can be implemented by early diesel injection with a large amount of low-reactivity fuel such as gasoline or gaseous fuel. Although RCCI combustion promises lower NOx and PM emissions and higher thermal efficiency than conventional diesel combustion, it requires a higher intake pressure (usually more than 1.7 bars) to maintain a lean fuel mixture. Therefore, in this study, practical applications of dual-fuel combustion with a low air-fuel ratio (AFR), which implies a low intake pressure, were systemically evaluated using propane in a diesel engine. The characteristics of dualfuel combustion for high and low AFRs were first evaluated. The proportion of propane used for four different operating conditions was then increased to decrease emissions and to identify the optimal condition for dual-fuel combustion. Although the four operating conditions differ, the AFR was maintained at 20 (? approximately equal to 0.72) and the 50% mass fraction burned (MFB 50) was also fixed. The results show that dual-fuel combustion can reduce NOx and PM emissions in comparison to conventional diesel combustion.  相似文献   

3.
利用高速摄影和纹影法,在可变温度和压力的定容燃烧弹中,模拟发动机的实际运转工况,进行了不同喷油压力和背景压力条件下柴油的雾化蒸发特性试验研究,得出一系列热态喷雾图像。研究表明:喷油压力越高,雾注总的贯穿距离、锥角和投影面积越大,但液核的最大贯穿距离、锥角和投影面积变化不大,显著蒸发时刻不断提前,气相部分投影面积增大,混合均匀性改善;随着背景压力的升高,气、液相贯穿距离均下降,雾注总的喷雾锥角增大,雾注面积、液核面积减小。  相似文献   

4.
The concept of Low Temperature Combustion (LTC) has been advancing rapidly because it may reduce emissions of NOx and soot simultaneously. Various LTC regimes that yield specific emissions have been investigated by a great number of experiments. To accelerate the evaluation of the spray combustion characteristics of LTC, to identify the soot formation threshold in LTC, and to implement the LTC concept in real diesel engines, LTC is modeled and simulated. However, since the physics of LTC is rather complex, it has been a challenge to precisely compute LTC regimes by applying the available diesel combustion models and considering all spatial and temporal characteristics as well as local properties of LTC. In this paper, LTC regimes in a constant-volume chamber with n-Heptane fuel were simulated using the ECFM3Z model implemented in a commercial STAR-CD code. The simulations were performed for different ambient gas O2 concentrations, ambient gas temperatures and injection pressures. The simulation results showed very good agreement with available experimental data, including similar trends in autoignition and flame evolution. In the selected range of ambient temperatures and O2 concentrations, soot and NOx emissions were simultaneously reduced.  相似文献   

5.
Understanding the mechanism of carbon oxidation is important for the successful modeling of diesel particulate filter regeneration. Characteristics of soot oxidation were investigated with carbon black (Printex-U). A flow reactor system that could simulate the condition of a diesel particulate filter and diesel exhaust gas was designed. Kinetic constants were derived and the reaction mechanisms were proposed using the experimental results and a simple reaction scheme, which approximated the overall oxidation process in TPO as well as CTO. From the experiments, the apparent activation energy for carbon oxidation with NO2-O2-H2O was determined to be 40±2 kJ/mol, with the first order of carbon in the range of 10∼90% oxidation and a temperature range of 250∼500°C. This value was exceedingly lower than the activation energy of NO2-O2 oxidation, which was 60±3 kJ/mol. When NO2 exists with O2 and H2O, the reaction rate increases in proportion to NO2. It increases nonlinearly with O2 or H2O concentration when the other two oxidants are fixed.  相似文献   

6.
Lean NOx trap (LNT) catalyst has been used to reduce NOx emissions from diesel engines. The LNT absorbs NOx in lean condition and discharges N2 by reducing NOx in rich conditions. Thus, it is necessary to make exhaust gas lean or rich conditions for controlling LNT system. For making a rich condition, a secondary injector was adopted to inject a diesel fuel into the exhaust pipe. In the case of secondary injector, the behavior of spray is easily affected by high temperature (i.e., 250 ~ 350 °C) occurred in the exhaust manifold. Therefore, it is needed to investigate the spray behavior of diesel fuel injected into an exhaust manifold, as well as the conversion characteristics for a lean NOx trap of a diesel engine with LNT catalyst. The characteristics of exhaust emissions in NEDC (New European Driving Cycle) mode were analyzed and spray behaviors were visualized in various exhaust gas conditions. The results show that as the exhaust gas mass flow increases, the spray cone angle becomes broad and the fuel is directed to the flow field. Besides, the cone angle of spray is decreased by centrifugal force caused in exhaust gas flow field. In addition, the effects of nozzle installation degree, injection quantity, and exhaust gas flow on NOx conversion performance were clarified.  相似文献   

7.
In an era in which environmental pollution and depletion of world oil reserves are of major concern, emissions produced by automotive vehicles need to be controlled and reduced. An ideal solution is to switch to a cleaner fuel such as natural gas, which generates cleaner emissions. In addition, control over the in-cylinder air-fuel mixture can be best achieved through a direct-injection mechanism, which can further improve combustion efficiency. This need for cleaner automobiles provides the motivation for this paper’s examination of the use of computational fluid dynamic (CFD) simulations to analyze the concentrations of the exhaust gases produced by a compressed natural gas engine with a direct-fuel-injection system. In this work, a compressed natural gas direct-injection engine has been designed and developed through a numerical simulation using computational fluid dynamics (CFD) to provide an insight into complex in-cylinder behavior. The emissions analyzed in this study were carbon monoxide (CO), nitric oxide (NO) and carbon dioxide (CO2), i.e. the main pollutants produced by natural gas combustion. Based on a stoichiometric mixture, the concentrations of CO and NO were computed using the dissociation of carbon dioxide and the extended Zeldovich mechanism. CO2 was calculated using a mass balance of the species involved in the combustion process. The simulation results were then compared with the experimental data generated by a single-cylinder research engine test rig. A good agreement was obtained with the experimental data for the engine speeds considered for all emissions concentrations.  相似文献   

8.
秦文瑾  王家富  李小海  刘浩 《汽车工程》2021,43(3):330-336,344
随着现代内燃机燃烧室内温度和压力的不断提升,液体燃料往往处于超临界状态,与亚临界状态相比,其喷雾射流行为特征发生了很大的变化.本研究采用大涡数值模拟方法对超临界环境下的单组分和多组分柴油表征燃料喷雾射流进行数值计算,对比了不同气体状态方程预测柴油表征燃料超临界射流行为的差异性,发现PR气体状态方程对正庚烷质量分数分布的...  相似文献   

9.
发动机燃用水乳化柴油的研究进展   总被引:1,自引:0,他引:1  
综述了柴油机燃用水乳化柴油的燃烧与喷雾特性、动力性与经济性及排放特性,对比分析了发动机燃用水乳化柴油与普通柴油在性能上的差异及其原因,总结了水乳化柴油在柴油机上的应用优化方法。结果表明:与柴油相比,乳化柴油着火滞燃期延迟,燃烧持续期缩短,喷雾贯穿距变长或相差不大,火焰升起高度增加;燃用乳化柴油时动力性下降,但有效热效率较柴油升高;乳化柴油可以明显降低NOx和炭烟排放,但多数工况下HC和CO排放有所升高,低转速和中低负荷工况下尤为明显;燃用乳化柴油时颗粒物数量浓度增加,体积浓度减小,且对于醛类和噪声排放并没有改善作用;添加合适添加剂或结合发动机技术协同作用,可以针对性地改善乳化柴油的燃烧过程,进一步起到节能减排的效果。基于燃料稳定性与燃料理化特性综合优化目标的燃料设计,以及适用于乳化柴油的高压共轨柴油机燃烧组织参数优化是未来的研究方向。  相似文献   

10.
An experimental study has been performed on spray combustion and two-dimensional soot concentration in diesel (ULSD), GTL and GTL-biodiesel fuel jets under high-pressure, high-temperature quiescent conditions. Instantaneous images of the fuel jets were obtained with a high-speed camera. It was confirmed that by blending GTL with 20% rapeseed biodiesel, certain fuel properties such as kinematic viscosity, density, surface tension, volatility, lower heating value and others may be designed and improved to be more like those of conventional diesel fuel but with considerable decrease in the amount of sulfur, PAH, cold filter plugging point, etc. The results showed that the spray tip penetration increased and the spray cone angle decreased when 20% biodiesel fuel was added to GTL fuel. Autoignition of the GTL-biodiesel blend occurred slightly earlier than that of diesel fuel. Experiments under high-pressure, high-temperature conditions showed that higher injection pressure induced a lower soot formation rate. The integrated flame luminosity, which serves as an indicator of soot concentration in the fuel jet, was slightly higher for the GTL-biodiesel blend than for pure GTL fuel due to the slightly higher sulfur content of pure biodiesel fuel.  相似文献   

11.
We investigated the effects of injection parameters such as injection pressure, ambient pressure, and ambient temperature on spray characteristics. We calculated the turbulence occurring point (t c ), defined as the time required to generate a vortex, and the deceleration point (t b ), defined as the time when spray penetration begins to decelerate, to elucidate the breakup mechanism of the test injectors. The spray velocity coefficient (Cv) was obtained to evaluate the spray characteristics. As the ambient pressure increases in the case of a slit injector, Cv decreases. We investigated the effects of nozzle tip shape according to injection pressure, ambient pressure, and fuel properties on spray characteristics and provide a Cv value of 0.38 for the swirl injector with a spray angle of 60° and the slit injector under atmospheric conditions. The value of Cv in the case of a slit injector was reduced by increasing the ambient pressure. Our results suggest that Cv of a swirl injector is constant regardless of changes in ambient pressure, injection pressure, and fuel properties. On the other hand, Cv of a slit injector is altered by changes in ambient pressure.  相似文献   

12.
《JSAE Review》2002,23(4):407-414
Fuel properties play a dominant role in the spray, mixture formation and combustion process, and are a key to emission control and efficiency optimization. This paper deals with the influence of the fuel properties on the spray and combustion characteristics in a high-pressure and temperature chamber. Light diesel fuel spray and combustion images were taken by using a high-speed video camera and analyzed by their penetration and evaporation characteristics in comparison with current diesel fuel. Then, a single-cylinder DI engine was used to investigate combustion and exhaust characteristics. The mixture formation of the light diesel fuel is faster than that of the current fuel depending on physical properties like boiling point, density, viscosity and surface tension. Engine test results show that smoke is reduced without an increase in other emissions.  相似文献   

13.
In diesel engine, spray penetration is usually changed by in-cylinder gas flow. Accurate prediction on diesel spray with gas flow is important to the optimal design of diesel fuel injection system. This paper presents a theory investigation focusing on the penetration of diesel spray with gas flow. In order to understand the effect of gas flow on the penetration of diesel spray, a one-dimensional spray model is developed from an idealized diesel spray, which is able to predict the spray behavior under different gas flow conditions. The ambient gas flow is simplified as ideal flow that has only constant flow velocity along x-axial and y-axial directions of spray. The x-axial and y-axial directions are respectively defined as along and vertical spray directions. The main assumption is that the y-axial direction gas flow has no effect on the penetration of spray along x-axial direction. The principles of conservation of mass and momentum are used in the derivation. Momentum of in-cylinder air flow is also taken into consideration. Validation of the model at stable condition is achieved by comparing model predictions with experimental measurements of diesel spray without gas flow from Naber's experiments. Furthermore, CFD simulations on penetration of diesel spray with gas flow were performed with the commercial code AVL-fire. The onedimensional model is validated by the penetration results with gas flow from CFD calculation. Results show that a reasonable estimation of the spray evolution can be obtained for both with and without ambient gas flow conditions.  相似文献   

14.
The diesel combustion process is highly dependent on fuel injection parameters, and understanding fuel spray development is essential for proper control of the process. One of the critical factors for controlling the rate of mixing of fuel and air is the number of injector holes in a diesel engine. This study was intended to explore the behavior of the formation of spray mixtures, combustion, and emissions as a function of the number of injector hole changes; from this work, we propose an optimal number of holes for superior emissions and engine performance in diesel engine applications. The results show that increasing the number of holes significantly influences evaporation, atomization, and combustion. However, when the number of holes exceeds a certain threshold, there is an adverse effect on combustion and emissions due to a lack of the air entrainment required for the achievement of a stoichiometric mixture.  相似文献   

15.
二甲醚/柴油混合燃料在压燃式发动机上的应用   总被引:1,自引:0,他引:1  
为探索二甲醚/柴油混合燃料作为柴油机替代燃料的应用性能,对D20二甲醚/柴油混合燃料的喷雾特性进行了试验研究;同时,开展了直喷式柴油机燃用二甲醚/柴油混合燃料动力性能、经济性能及排放性能研究。结果表明:在同样的环境背压下,D20混合燃料的油束与柴油相比较,贯穿度有所缩短,喷雾锥角有所增大;柴油机燃用二甲醚/柴油混合燃料时,通过适当调整循环油量,发动机的动力性可以超过原柴油机,最低当量比油耗下降4.5%,烟度指标下降70%以上,NOx排放降低30%~50%;二甲醚/柴油混合燃料是一种能实现高比功率、低排放的石油替代燃料。  相似文献   

16.
In lean-DeNOX catalysis reactions, hydrogen is a good reducing agent in PGM catalysts as well as an effective promoter in selective catalytic reduction reactions over base metal oxide catalysts. However, such a lean-DeNOX system, which uses hydrogen, requires an on-board fuel reforming system applicable to internal combustion engines. In this study, catalytic partial oxidation (CPOx) performance was tested in a laboratory for various reactants and hydrocarbon conditions. Volume concentrations of 5–10% oxygen and 0-5% water vapor were used to simulate diesel exhaust, and n-C12H26 was used as the feedstock for the reforming reaction. In the CPOx of n-C12H26, the highest hydrogen selectivity was 64% and was achieved at 100,000 h-1 GHSV. Additionally, the C/O ratio was less than unity in the absence of water vapor. However, as the water concentration was increased to 2.5 and 5.0 vol. % in the n-C12H26 CPOx reactions, the maximum hydrogen selectivity was increased from 64% in the absence of water to 70% and 75%, respectively. This effect is a consequence of the water-gas shift reaction over the catalyst bed. Regarding oxygen concentration effects, hydrogen selectivity slightly increased with increasing oxygen concentration from 10% to 15%. It was also found that the CPOx reaction of n-C12H26 can be ignited at temperatures below 300 C. Accordingly, it can be concluded that CPOx is a useful and feasible device for promoting diesel DeNOx catalysis in terms of hydrogen productivity and reaction initiation.  相似文献   

17.
This study summarizes engine speed and load effects on HC species emissions from premixed charge compression ignition (PCI) and conventional diesel combustion, and it evaluates diesel oxidation catalyst (DOC) formulations on a gas flow reactor for the purpose of diesel particulate filter regeneration or lean NOx trap desulfation. HC emissions are sampled simultaneously by a Tedlar bag for light HC species and by a Tenax TA™ adsorption trap for semi-volatile HC species, and they are analyzed by gas chromatography with a flame ionization detector. The bulk temperature and residence time during combustion are key parameters that are important for understanding the effects of speed and load on engine-out HC emissions. The degree of post-flame oxidation is higher in PCI than in conventional combustion, and it is increased for PCI with a higher speed and load, as indicated by a lower fuel alkanes/THC ratio, a higher alkenes/fuel alkanes ratio, and a higher methane/THC ratio. Ethene and n-undecane are two representative HC species, and they are used as a surrogate mixture in the gas flow reactor to simulate PCI and conventional combustion with in-cylinder post fuel injection. Among the three DOC formulations tested, the catalyst with constituent precious metals of platinum and palladium (PtPd) showed the best light-off performance, followed by PtPd with an addition of cerium dioxide (PtPd+CeO2), and platinum (Pt), regardless of exhaust compositions. Conventional combustion exhaust composition shows a lower light-off temperature than that of PCI, regardless of catalyst formulation.  相似文献   

18.
为确定二甲醚掺入柴油后对燃料雾化性能的改善效果,利用阴影成像与数字图像处理技术,对不同掺混比、喷射压力以及喷孔直径等条件下的二甲醚-柴油混合燃料喷雾粒子尺寸分布特性进行了对比试验研究.结果发现:由于柴油中二甲醚的闪急沸腾作用,随着二甲醚掺混比的增加,混合燃料粒子尺寸分布曲线整体向小颗粒方向偏移,较大粒子数目较柴油明显减少,有助于降低发动机炭烟排放;喷孔直径、喷射压力等喷射参数对混合燃料雾化粒子分布有较大影响,减小喷孔直径使燃油粒子更加细化,降低喷射压力则使混合燃料雾化效果有变差的趋势.  相似文献   

19.
To comply with reinforced emission regulations for harmful exhaust gases, including carbon dioxide (CO2) emitted as a greenhouse gas, improved technologies for reducing CO2 and fuel consumption are being developed. Stable lean combustion, which has the advantage of improved fuel economy and reduced emission levels, can be achieved using a sprayguided-type direct-injection (DI) combustion system. The system comprises a centrally mounted injector and closely positioned spark plugs, which ensure the combustion reliability of a stratified mixture under ultra-lean conditions. The aim of this study is to investigate the combustion and emission characteristics of a lean-burn gasoline DI engine. At an excess air ratio of 4.0, approximately 23% improvement in fuel economy was achieved through optimal event timing, which was delayed for injection and advanced for ignition, compared to that under stoichiometric conditions, while NOx and HC emissions increased. The combustion characteristics of a stratified mixture in a spray-guided-type DI system were similar to those in DI diesel engines, resulting in smoke generation and difficulty in three-way catalystutilization. Although a different operating strategy might decrease fuel consumption, it will not be helpful in reducing NOx and smoke emissions; therefore, alternatives should be pursued to achieve compliance with emission regulations.  相似文献   

20.
高压共轨燃油喷雾特性的试验研究与模型修正   总被引:3,自引:0,他引:3  
利用高速闪光摄像技术建立了燃油喷雾特性试验台架,在不同喷射压力(80 MPa,102 MPa,130 MPa)和不同喷射背压(2 MPa,3 MPa)下对高压共轨电控喷油器的燃油瞬态喷雾特性进行了研究,并用Matlab编程对喷雾图像进行了处理,测量了不同工况下油束的贯穿度和锥角。通过试验数据,利用最小二乘非线性曲线拟合方法对高压喷射油束模型进行了修正,模型计算结果与试验结果基本吻合,表明修正后的油束模型能更好地预测高压喷射时的油束贯穿度和锥角。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号