首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
从汽车高能无触点点火系测试功能要求方面论述了微机控制的测试台的必要性和重要性。对系统的测试原理作了较详细的介绍。给出了测试台的系统框图和工作原理框图,以及本系统的软件设计方法。在实际应用中表明该测试台完全能满足汽车高能无触点点火系的测试要求。  相似文献   

2.
为了使车架与车身的振动迅速衰减,改善汽车行驶的平顺性和舒适性,汽车悬架系统上一般都装有减振器,目前汽车上广泛采用的是双向作用筒式减振器。减振器失效或损坏,将直接影响到汽车的行驶平顺性和乘坐舒适性,同时也会影响汽车零部件的使用寿命。因此,减振器的检查与保养是一项必不可少的工作。  相似文献   

3.
《汽车与配件》2004,(25):27-27
德尔福气动可变减振器(AAVD)是用于空气悬架系统的自调节装置,它是气动受控的杜式减振器,AAVD使用一个内阀门测量两个月状减振器阀流经柱式减振器活塞的减振器油的流量。通过滑阀控制减振器工作。减振器根据有效载荷联系改变阻尼力。使车辆能按照空载或满载的不同工况来进行相应调节来替代原来的取平均阻尼值的方法,从而  相似文献   

4.
该仿真系统的主要任务是创建各种汽车减振器的计算模型,进而仿真计算、优化减振器的阻尼和温度特性。本系统包含5个主要模块:采用SEGEL和LANG模型的各种主要减振器的阻尼计算仿真;不同结构的减振器之间的兼容组合;减振器的优化模块;涉及各减振器结构和性能参数、减振器三维图库以及试验数据的数据库;和CAD软件UNIGRAPHICS Ⅱ的接口部分。整个系统以计算流体力学、优化理论、传热学原理、机械设计和计算数学等知识为理论基础,并通过试验等手段来保证结果和实用性。使用该系统可以对减振器的阻尼精确仿真,实现减振器的快速无纸设计,达到减少设计开发费用缩短设计开发时间的目的。当然,本系统的模型对一些影响减振器性能的次要因素如工作缸内的真空现象、滞后行为等的忽略对仿真精度有一定的负面影响,而消除这些影响、提高仿真精度也是日后工作的重要。  相似文献   

5.
为了解决某车辆被动悬架系统中减振器由于温升过高而漏油失效的问题,提出了车辆悬架系统机械特性与其热学特性相互耦舍的模型。采用MATLAB/Simulink建立闭环正反馈系统的热一机耦合模型,并通过仿真计算得到某车辆在多种工况以及不同悬架参数条件下减振器的温升特性曲线。研究结果表明:随着路面等级的下降、车速的提高、簧上质量的增大以及悬架刚度的减小,减振器的温度升高;车轮刚度对减振器温升特性影响较小;簧下质量对减振器温升特性无影响。  相似文献   

6.
利用平板测试台检测汽车悬架性能时,汽车悬架系统在测试台上作有阻尼的自由振动,文中在建立自由振动微分方程的基础上,通过采用模态坐标变换方法对振动方程进行求解,得出了悬架系统在广义坐标下的振动响应.  相似文献   

7.
为了使车架与车身的振动迅速衰减,改善汽车的行驶平顺性和舒适性,汽车悬架系统上一般都装有减振器。目前,现代汽车上广泛采用的是双向作用筒式减振器。  相似文献   

8.
介绍了JQ-1型汽车点火系统性能测试台的机械设计特点及控制原理。  相似文献   

9.
汽车动力传动系扭振减振器对扭振固有特性影响分析   总被引:1,自引:0,他引:1  
本文基于装备有离合器从动盘式扭振减振器和双质量飞轮式扭振减振器的汽车动力传动系统,进行了系统扭振固有特性计算分析模型的建立,采用广义Jacobi算法计算出各振扭振系统模型的固有特必和固有振型并进行了临界速和临界车速的计算分析,得出了双质量飞轮式扭振减振器对汽车动力传动系统扭振固有特性的影响特点,对汽车动力传动系统的扭振分析和计算具有有重要的实际指导意义,并为双质量飞轮式扭振减振器的设计提供了有力的  相似文献   

10.
ABS装置的故障自诊断 美国福特轿车均采用了防抱制动系统(ABS),该系统具有十分先进的故障自诊断功能。ABS自诊断接头通常位于前减振器或行李箱与后座椅隔板边上。例Lincoln车的ABS自诊断接头位于右前减振器处而Sable和Taurus车则在左前减振器旁;而Tempo等采用EEC-Ⅳ电控系统的车种,其ABS自诊断接头位于行李箱与后座椅隔板边。 一、故障代码的读取 福特轿车在运行过程中,ABS电脑将检测到防抱制动系统  相似文献   

11.
梅一丹  胥峰  黄恒 《专用汽车》2012,(6):98-100
针对汽车减振器使用过程中产生的常见噪声,对产生噪声的减振器进行了分批测试分析,总结了减振器产生噪声的原因,并且针对这些原因对减振器的结构及使用提出了改进措施。经过对改进后的减振器进行测试分析,验证了这些改进措施可以减少减振器的噪声,并能提高减振器的性能。  相似文献   

12.
确定了电控气动式可调阻尼减振器在"软"、"硬"阻尼状态下的阻尼力设计目标.设计了以电磁阀和摆动气缸作为驱动机构的电控气动式可调阻尼减振器,通过仿真计算分析了该减振器的阻尼特性.研制了可调阻尼减振器样件并在试验台架上进行了性能测试.结果表明,除后减振器压缩阻力外.其余各项阻尼力试验值与仿真值的平均偏差小于7%,表明减振器的仿真模型有效.将该可调阻尼减振器装车进行的道路平顺性试验表明,与被动式减振器相比,采用可调阻尼减振器可使客车的行驶平顺性得到提高.  相似文献   

13.
汽车筒式液阻减振器技术的发展   总被引:29,自引:1,他引:29  
分析了汽车乘坐舒适性/行驶平顺性和操作稳定性对筒式液阻减振器特性的要求,提出汽车在不同行驶工况减振器特性的要求是不的;分析了被动式减振器的发展历程及非充气和充气减振器的特点,阐述了机械控制式可调阻尼减振器,电子控制式减振器以及电流变和磁流变液体减器等的结构特点,工作原理及其动态特性;分析了筒式液阻减振器其于经验设计/实验修正开发方法的缺点,阐述了基于CAD/CAE技术的现代设计开发方法的过程及其关键问题,最后分析了我国筒式液阻减振器技术的发展状况及问题,展望了减振器技术的发展前景。  相似文献   

14.
汽车减震器通过长时间的使用以后,减震器变软或变硬。本文件探讨了减振器硬度的原因:在进行耐久性测试之后,从减振器油中提取减振器油,以分析减振油制剂性能的变化。为了加速减振车架和车身的振动,以提高车辆的可读性("舒适性"),在大多数车辆的悬挂系统内装有减震器的车辆减震器也称作"悬挂",弹簧和减震器的化合物,缓冲器不用来承受车身的重量,但是,当弹簧吸收弹簧时,可以容纳冲击和吸收表面冲击的能量。反弹弹簧用于缓冲冲击,将"高能量二次冲击"转换为"低能量多次冲击",而减震器则逐渐减少"多重低能量冲击"。  相似文献   

15.
江浩斌  杨如泉  陈龙  孙丽琴 《汽车工程》2007,29(11):970-974
分析了某轿车麦弗逊式前悬架液力减振器的结构特点,建立了该减振器阻尼特性的数学模型,分别采用钱氏摄动法和有限元法计算减振器节流阀片的挠曲变形,通过仿真计算得到了相应的减振器阻尼特性,通过台架试验进行了减振器样件的阻尼性能测试。对比分析表明:仿真结果与试验结果基本一致,验证了减振器阻尼特性数学模型的有效性;根据有限元法计算的阀片变形所预测的减振器阻尼特性更接近试验值,研究结果有利于提高液力减振器阻尼特性的计算精度。  相似文献   

16.
车用减振器的外特性建模与仿真   总被引:2,自引:1,他引:2  
针对某轿车的弹性阀片和弹簧结合型减振器的结构形式,建立了减振器复原行程开阀前、开阀后及压缩行程的阻尼力力学模型,推导出了减振器阻尼力的计算公式,并通过计算机仿真得出该轿车减振器的模拟工作特性。计算机仿真和生产实践证明,所建立的数学模型是正确的,计算方法也符合实际要求。  相似文献   

17.
麦弗逊悬架减振器侧向力对减振器寿命和悬架性能影响很大,系统分析减振器侧向力对麦弗逊悬架设计具有重要意义。减振器的侧向力取决于车辆运动时受到的地面的作用力和悬架的几何结构,本文综述了车辆行驶时车轮上下运动的侧向力、加速、减速、转弯时侧向力的分析,确定了麦弗逊悬架的几何结构对减振器侧向力的影响因素,并通过国内外最新产品的实例说明通过改变悬架的几何结构来减小减振器侧向力的具体方法和产生的效果。最后对减振器侧向力进行了总结,并对未来麦弗逊悬架的研发工作提出了一些建议。  相似文献   

18.
结合汽车用减振器的工作特点,按照国产某微型轿车后悬架的技术要求,设计了基于混合工作模式的单出杆单筒磁流变减振器,并进行了实物样品研制。根据流体力学理论,建立混合工作模式下磁流变减振器计算模型,并对磁流变减振器的阻尼力、动态响应时间及其影响因素进行了理论分析。对设计的磁流变减振器进行台架动态特性测试,试验结果表明:单出杆...  相似文献   

19.
建立了分体式充气可调减振器阻尼特性数学模型,运用混合编程方法开发了该减振器阻尼特性的仿真分析软件。利用C Builder语言完成了应用程序模块和用户界面的设计,通过调用MATLAB中的数学函数库和图形函数库,实现了仿真结果的图形绘制功能。运用所开发的仿真软件计算了减振器的阻尼特性,并进行了减振器性能台架试验,仿真结果与试验结果基本一致,从而验证了减振器模型和仿真系统的有效性。  相似文献   

20.
根据双筒式减振器的结构特点,依据流体力学和材料力学,总结前人所建立的数学模型,基于VC++开发出双筒式减振器外特性仿真分析软件,通过获取双筒式减振器的重要结构尺寸,输入相关参数,软件可根据内置模型分析出双筒式减振器的外特性——示功特性和速度特性,为减振器设计提供理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号