首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The NW Mediterranean experiences, as illustrated by the last decade, strong and rapidly varying storms with severe waves and winds. This has motivated a continuous validation of models and the efforts to improve wave and wind predictions. In this paper we use two atmospherics models, MASS (from SMC-Meteorological Office of Catalunya) and ARPEGE (from Météo-France), to force two third generation wave models: WAM and SWAN. The evaluation and comparison has been carried out for two severe storms registered in November 2001 and March–April 2002.The ARPEGE and MASS models predicted higher 10 m wind speeds than coastal meteorological stations, a fact attributed to local land influences. Regarding the 10 m wind direction, models do not present large differences, although considerable deviations from recorded data were found during some dates. ARPEGE presents less scatter and lower errors than MASS when compared with QuikSCAT data.The 10m wind fields from both atmospheric models were used to force the two selected wave models and analyse the errors and sensitivities when predicting severe wave storms. The wave model simulations show some interesting results; during the storm, the spatial wave pattern using ARPEGE showed a higher maximum, although the values of significant wave height at the buoys were lower than the ones forced by MASS (with both WAM and SWAN). The SWAN simulations show a better agreement in predicting the growing and waning of the storm peaks. The prediction of mean period was improved when using the ARPEGE wind field. However the underestimation by SWAN due to the large energy at high frequencies was evident. Validation of spectral shape predictions showed that it still has considerable error when predicting the full frequency spectra. The storms showed bimodal spectral features which were not always reproduced by wave models and are likely to be responsible for part of the discrepancies.  相似文献   

2.
Development and application of offshore wind turbine farms have been increasing, particularly in the developed countries,because of their high power rating, high yield energy, high offshore wind, and unlimited space in the offshore. However, the poor data and simplistic methodologies of the previous assessments result in insufficient estimates of the wind energy potential.Thus, this study provides an assessment of the offshore wind energy resources in Malaysia using multi-mission satellite altimetry data. The satellite altimetry data was extracted from Radar Altimeter Database Systems located at GNSS and Geodynamics Laboratory, Universiti Teknologi Malaysia. The data were validated by buoy measurements from two offshore sites, as indicated by the high correlation coefficient of 0.88. Further, the offshore wind energy resource mapping data in Malaysia identified three areas in Peninsular Malaysia and Borneo as potential areas for offshore wind energy development.  相似文献   

3.
Forecasting of sea-state characteristics has a great importance in coastal and ocean engineering studies. Therefore, the purpose of this study was to investigate performances of Adaptive-Network-Based Fuzzy Inference System (ANFIS) and several parametric methods in the Black Sea. For this purpose, different fuzzy models with different input combinations were developed for two different wind data sources (TSMS and ECMWF) at two offshore buoy stations. It also aimed to apply several approaches to event-based data sets for wave predictions. Generally, in literature the tendency is to use time series data for wave predictions. In this kind of prediction approach, lagged time series data are taken as inputs and current or future variables are taken as output. In this study, event-based data for each independent storm were extracted from time series data. Simultaneous or concurrent data of wind speed, blowing duration, fetch length and wave characteristics were detected for each single storm. These event data were then used to set up models. The hindcast results were validated with significant wave height and mean wave period data recorded in Hopa and Sinop buoy stations. The performance of developed fuzzy models were also compared with that of four different parametric methods (Wilson, SPM, Jonswap, and CEM methods) applied for two wind data sources at both buoy stations. Finally, it was determined that in the prediction of both wave parameters (H s and T z) the ANFIS models (R = 0.66, squared correlation coefficient, and MAE = 0.37 m, mean absolute error, for the best model in prediction of H s) were more accurate than the parametric methods (R = 0.63 and MAE = 0.75 m for the best model in prediction of H s).  相似文献   

4.
The quality of numerical wave forecasts can be improved significantly by assimilating wave observations prior to the forecast. In the present study a technique for such assimilation is developed that exploits (a) the efficiency of a limited number of integral control variables, and (b) the effectiveness of variational (model-consistent) assimilation. The formal procedure is independent of the type of control variables and of the wave model (moreover, no adjoint wave model is required). In the present study, integral control variables are chosen to represent large-scale errors in the driving wind fields and uncertainties in the wave model. The assimilation technique is validated with observations of the ERS-1 satellite altimeter and two waverider buoys in two consecutive storms in the Norwegian Sea. The assimilation of the observations reduced the errors in the forecasted significant wave height at the buoy locations typically from 25% to 12%. For low-frequency waves the effect of the assimilation is similarly significant at one buoy location but marginal at the other buoy location.  相似文献   

5.
The quality of surface winds derived from four meteorological models is assessed in the semi-enclosed Adriatic Sea over a 2-month period: a global hydrostatic model ECMWF T511 (40 km resolution), a hydrostatic limited area model LAMBO (20 km), and two non-hydrostatic limited area models: LAMI (7 km) and COAMPS™ (4 km). These wind models are used to drive a 2 km resolution wave model (SWAN) of the Adriatic, and wind and wave results are compared with observations at the ISMAR oceanographic tower off Venice. Waves are also compared at buoy locations near Ancona and Ortona. Consistently with earlier studies, the ECMWF fields underestimate the wind magnitude and do not reproduce the known spatial structure of strong wind events. The results show that the higher-resolution, limited area models LAMI and COAMPS exhibit better amplitude response than the coarser ECMWF: there is a 3- to 4-fold reduction of the wind underestimation at the platform (from 36% to 8–11%). The wave response is also improved with LAMI and COAMPS: there is a 2-fold reduction in the underestimation of wave heights at the platform. These non-hydrostatic models also produce wind fields with more realistic small-scale, spatial structure during strong wind events. The temporal correlation between observed and modelled wind, however, is highest with the global ECMWF model due to the fact that large-scale features can be predicted deterministically, whereas small-scale features can only be predicted stochastically. Models with less small-scale structure have better correlation because they have less “noise.” This explanation is supported by increased correlation between modelled and observed waves, the waves representing a smoothing of the wind over fetch and duration. Although there is room for improvement, the high-resolution, non-hydrostatic models (LAMI and COAMPS) offer significant advantages for driving oceanographic simulations in semi-enclosed basins such as the Adriatic Sea.  相似文献   

6.
This contribution describes the procedure used during the Prestige oil-spillage event, by means of an Operational Oceanography System, and the behaviour of the present prediction tools (hydrodynamic and dispersion models) applied to it. The accuracy of these tools is estimated by a reanalysis of field data transmitted by a sea surface drifting buoy, released at the time of the oil spill. The numerical models applied were the Regional Ocean Modeling System (ROMS), fed by the available six-hourly NCEP atmospheric information, together with a Lagrangian Particle-Tracking Model (LPTM). ROMS has been used to estimate the current fields for the Bay of Biscay, whilst the LPTM has provided the oil spill trajectories. The results demonstrate that the accuracy of the numerical models depends upon the quality of the meteorological input data. In this case, the current fields at the sea surface, derived by ROMS, have been underestimated by the wind fields of the NCEP reanalysis data. An efficient calibration of these wind fields, with data provided by the Gascony buoy (fixed oceanic and atmospheric station), achieves more realistic looking results; this is reflected in the comparison between the buoy trajectory predicted numerically and the tracked movements of the drifting buoy.  相似文献   

7.
This article is about the use of measured wave-induced vessel motions for estimation of ocean wave spectra by application of the wave buoy analogy. In the study, data from a larger, in-service container ship is considered. The estimation of wave spectra, equivalently sea state parameters, is based on measurements from, respectively, a gyro and two accelerometers leading to the simultaneous use of the pitching motion together with the horizontal and vertical accelerations in a position close to the forward perpendicular. The study of in-service data leads to contemplations about the vessel's advance speed, as the possible existence of sea current means that speed-over-ground (SOG) and speed-through-water (STW) will be different. The article discusses aspects related to advance speed in the context of the wave buoy analogy, and a smaller sensitivity study is conducted. Preceding to the sensitivity study, a comparison is made between sea state estimates by the wave buoy analogy and estimates obtained from a hindcast study. The article shows an acceptable agreement between the two sets of estimates. Following, the main conclusion from the sensitivity study on advance speed is that errors and uncertainties in the speed log have an effect on the estimates of the wave buoy analogy. In fact, the effect can be severe if reliable STW measurements are not available. In the final part, the article includes a few discussions about (non)stationary conditions in the context of the wave buoy analogy, and, although the effect on results is not necessarily detrimental, care must be shown when the wave buoy analogy is applied during in-service conditions.  相似文献   

8.
A new data assimilation method for ocean waves is presented, based on an efficient low-rank approximation to the Kalman filter. Both the extended Kalman filter and a truncated second-order filter are implemented. In order to explicitly estimate past wind corrections based on current wave measurements, the filter is extended to a fixed-lag Kalman smoother for the wind fields. The filter is tested in a number of synthetic experiments with simple geometries. Propagation experiments with errors in the boundary condition showed that the KF was able to accurately propagate forecast errors, resulting in spatially varying error correlations, which would be impossible to model with time-independent assimilation methods like OI. An explicit comparison with an OI assimilation scheme showed that the KF also is superior in estimating the sea state at some distance from the observations. In experiments with errors in the driving wind, the modeled error estimates were also in agreement with the actual forecast errors. The bias in the state estimate, which is introduced through the nonlinear dependence of the waves on the driving wind field, was largely removed by the second-order filter, even without actually assimilating data. Assimilation of wave observations resulted in an improved wave analysis and in correction of past wind fields. The accuracy of this wind correction depends strongly on the actual place and time of wave generation, which is correctly modeled by the error estimate supplied by the Kalman filter. In summary, the KF approach is shown to be a reliable assimilation scheme in these simple experiments, and has the advantage over other assimilation methods that it supplies explicit dynamical error estimates.  相似文献   

9.
Sea surface temperature fields of the North Sea and Baltic Sea have been constructed for the year 2001 using a multiplatform Optimal Interpolation scheme. The analyzed fields are constructed every 12 h on a 10 km spatial grid. The product is based upon observations from the three NOAA satellites 12, 14 and 16 together with a large amount of in situ observations. Space dependent covariance functions are estimated from the satellite observations and account for spatial and temporal lags. Several independent methods have been used to assess the error on the sea surface temperature product. Compared against independent in situ observations, the mean RMS difference for the year 2001 is 0.78 °C. The spatial distribution of the errors reveals that the Baltic Sea in general show higher errors than the North Sea. The error statistics throughout the year show a temporal variation of the errors with maximum during summer and winter. Tests with a varying number of satellite observations show that the accuracy of the satellite observations is the most important parameter in terms of reducing the errors on the interpolated sea surface temperature product.  相似文献   

10.
Measurements of boundary layer moisture have been acquired from Rotronic MP-100 sensors deployed on two NDBC buoys in the northern Gulf of Mexico from June through November 1993. For one sensor, which was retrieved approximately 8 months after deployment, the post- and precalibrations agreed closely and fell well within WMO specifications for accuracy. The second sensor operated continuously from June 1993 to February 1997 (3.5 years). Buoy observations of relative humidity and supporting data were used to calculate specific humidity and the surface fluxes of latent and sensible heat. Specific humidities from the buoys were compared with observations of moisture obtained from nearby ship reports, and the correlations were generally high (0.7–0.9). Surface gravity wave spectra were also acquired. The time series of specific humidity and the other buoy parameters revealed three primary scales of variability, small (h), synoptic (days), and seasonal (months). The synoptic variability was clearly dominant and occurred primarily during September, October, and November. Most of the synoptic variability was due to frontal systems that dropped down into the Gulf of Mexico from the continental US followed by air masses which were cold and dry. Cross-correlation analyses of the buoy data indicated that: (1) the moisture field was highly coherent over distances of 800 km or more in the northern Gulf of Mexico; and (2) both specific humidity and air temperature served as tracers of the motion associated with propagating atmospheric disturbances. These correlation analyses also revealed that the prevailing weather systems generally entered the buoy domain from the South prior to September, but primarily from the North thereafter. Spectra of the various buoy parameters indicated strong diurnal and semidiurnal variability for barometric pressure and sea surface temperature (SST) and lesser variability for air temperature, wind speed and significant wave height. The surface fluxes of latent and sensible heat were dominated by the synoptic events which took place from September through November with the transfer of latent heat being primarily from the ocean to the atmosphere. Finally, an analysis of the surface wave observations from each buoy, which included calculations of wave age and estimates of surface roughness, indicate that major heat and moisture flux events coincide with periods of active wave growth, although the data were insufficient to identify any causal relationships.  相似文献   

11.
The exploitation of wind energy is rapidly evolving and is manifested in the ever-expanding global network of offshore wind energy farms.For the Small Island Developing States of the Caribbean Sea(CS),harnessing this mature technology is an important first step in the transition away from fossil fuels.This paper uses buoy and satellite observations of surface wind speed in the CS to estimate wind energy resources over the 2009-2019 11-year period and initiates hour-ahead forecasting using the long short-term memory(LSTM) network.Observations of wind power density(WPD) at the 100-m height showed a mean of approximately 1000 W/m~2 in the Colombia Basin,though this value decreases radially to 600-800 W/m~2 in the central CS to a minimum of approximately 250 W/m~2 at its borders in the Venezuela Basin.The Caribbean LowLevel Jet(CLLJ) is also responsible for the waxing and waning of surface wind speed and as such,resource stability,though stable as estimated through monthly and seasonal coefficients of variation,is naturally governed by CLLJ activity.Using a commercially available offshore wind turbine,wind energy generation at four locations in the CS is estimated.Electricity production is greatest and most stable in the central CS than at either its eastern or western borders.Wind speed forecasts are also found to be more accurate at this location,and though technology currently restricts offshore wind turbines to shallow water,outward migration to and colonization of deeper water is an attractive option for energy exploitation.  相似文献   

12.
专门研制的多功能智能测流浮标,运用标准横流标(浮标)为载体,配置集成专用多普勒流速仪、超声波水位器、风速风向传感器、卫星定位器、数据信息智能处理器等设备与专用管理系统,有效解决内河航道重要河段、河口的水位、水深、流速、流向、能见度、风速、风向等与船舶航行有关的实时动态要素的智能采集与传输等技术问题,实现内河航道要素船岸智能感知,引导船舶安全航行。  相似文献   

13.
A three dimensional hydrodynamic model of the Malin-Hebrides shelf region is used to investigate the spatial variability of the wind and tidally induced residual flow in the region and the influence of flow from the Irish Sea and along the shelf edge. By this means it is possible to understand the spatial variability in the long term observed flow fields in the region and the range of driving forces producing this flow. The model uses a sigma coordinate grid in the vertical with a finer grid in the near surface and near bed shear layers. The vertical diffusion of momentum in the model is parameterised using an eddy viscosity coefficient which is derived from turbulence energy closure models. Two different turbulence models are used to compute the eddy viscosity, namely a two-equation (itq2−q2ℓ) model which has prognostic equations for both turbulence energy and mixing length and a simpler model in which the mixing length is a specified algebraic function of the water depth.The wind induced response to spatially and temporally constant orthogonal wind stresses, namely westerly and southerly winds of 1 N m−2, are derived from the model. By using orthogonal winds and assuming linearity, then to first order the response to any wind direction can be derived. Computed flows show a uniform wind driven surface layer of magnitude about 3% of the wind speed and direction 15 ° to the right of the wind, in deep water. Currents at depth particularly in the shelf edge and near coastal region show significant spatial variability which is related to variations in bottom topography and the coastline.Calculations show that tidal residual flows are only significant in the near coastal regions where the tidal current is strong and exhibits spatial variability. Flow into the region from the Irish Sea through the North Channel although having its greatest influence in the near coastal region, does affect currents near the shelf edge region. Again the spatial variability of the flow is influenced by topographic effects.A detailed examination of wind induced current profiles together with turbulence, mixing length and viscosity, at a number of locations in the model from deep ocean to shallow near coastal, shows that both turbulence models yield comparable results, with the mixing length in the two equation model showing a similar dependence to that specified in the simpler turbulence model.Calculations clearly show that flow along the shelf edge area to the west of Ireland and from the Irish Sea entering the region, together with local wind forcing can have a major effect upon currents along the Malin-Hebrides shelf. The flow fields show significant spatial variability in the region, comparable to those deduced from long term tracer measurements. The spatial variability found in the calculations suggests that a very intense measurement programme together with inflow measurements into the area is required to understand the circulation in the region, and provide data sets suitable for a rigorous model validation.  相似文献   

14.
In this paper, we discuss nonlinear motion of a buoy connected vertically to the seabed via a tensioned tether (tethered-buoy). A series of scaled model tests has been conducted and a significant nonlinear behavior of the buoy motion, sub-harmonic motion in particular, is observed. Taking account of the influence of time-varying tether tension on the buoy motion, theoretical explanation is made for the sub-harmonic response. The stability of the tethered-buoy system is focused based on Mathieu instability theory. A strongly coupled numerical model between the buoy motion and the tether behavior is established to clarify the mechanism of the nonlinear motion of the tethered-buoy system. A comparison between the experiment data and simulation results is presented not only for the linear but also for the sub-harmonic components. Influential factors for the sub-harmonic motion are discussed in detail. It turned out that the sub-harmonic motion is dominated by the nonlinear coupling effect of time-varying tension in the tether with the buoy motion. Finally, the influential factors to the sub-harmonic motion are indicated throughout the comparison between two different buoy models.  相似文献   

15.
Within the framework of several local and international programs, a quasi-operational ocean-forecasting system for the Southeastern Mediterranean Sea has been established and evaluated through a series of preoperational tests. The Princeton Ocean Model (POM) is used for simulating and predicting the hydrodynamics while the Wave Model (WAM) is used for predicting surface waves. Both models were set up to allow varying resolution and multiple nesting. In addition, POM was set up to be easily relocatable to allow rapid deployment of the model for any region of interest within the Mediterranean Sea. A common requirement for both models is the need for atmospheric forcing. Both models require time varying wind or wind stress. In addition, the hydrodynamic model requires initial conditions as well as time dependent surface heat fluxes, fresh water flux, and lateral boundary conditions at the open boundaries. Several sources of atmospheric forcing have been assessed based on their availability and their impact on the quality of the ocean models' forecasts. The various sources include operational forecast centers, other research centers, as well as running an in-house regional atmospheric model. For surface waves, higher spatial and temporal resolution of the winds plays a central role in improving the forecasts in terms of significant wave height and the timing of various high wave events. For the hydrodynamics, using the predicted wind stress and heat fluxes directly from an atmospheric model can potentially produce short range ocean forecasts that are nearly as good as hindcasts forced with gridded atmospheric analyses. Finally, a high-resolution, nested version of the model has shown to be stable under a variety of forcing conditions and time scales, thus indicating the robustness of the selected nesting strategy. For the southeastern corner of the Mediterranean, at forecast lead times of up to 4 days the high-resolution model shows improved skill over the coarser resolution driving model when compared to satellite derived sea surface temperatures. Most of the error appears to be due to the analysis error inherent in the initial conditions.  相似文献   

16.
文中介绍了海上溢油微型跟踪浮标的技术特点和研究情况,通过水动力学研究,优化了微型跟踪浮标技术参数,采用卫星定位通讯方式实现海上溢油的全天候全过程监测,海上试验效果良好,为海上溢油事故应急快速反应提供了一种有效技术手段。  相似文献   

17.
Satellite images of surface chlorophyll-a concentration measured by the sea-viewing wide field-of-view sensor (SeaWiFS) and of sea surface temperature derived from advanced very high resolution radiometer (AVHRR) measurements, combined with in-situ drifter measurements of surface currents, and ancillary wind, Po River discharge and surface salinity data, are used to describe the surface dynamics in the northern Adriatic during the period September–October 1997.The satellite observations revealed very complex mesoscale dynamics, with time scales of a day or two and length scales of about 10 km, including the meandering and instability of basin-scale currents (e.g., the western coastal layer), jets/filaments and eddies. In addition, the two typical patterns of the Po River plume are observed and qualitatively explained in terms of wind forcing. A basin-wide double gyre pattern spreads the rich runoff water across most of the northern Adriatic from mid-September to early October, following Bora wind events and under stratified sea conditions. In contrast, in late October the Po plume is confined to the coast due to weaker winds and de-stratified conditions. This variability in the Po River plume extension is also confirmed by in-situ salinity measurements.  相似文献   

18.
沿海航标夹持船   总被引:2,自引:0,他引:2  
沿海航标夹持船是为解决多年来航标工人传统的不安全的跳越登标作业方式而研制的一种新型沿海航标维护船,该船在艏部设液压航标夹持装置,进行航标作业时可通过夹持装置将船与浮标连成一体,航标工人可在6级风、1.5米浪高的海况下平稳登标作业。由此,极大改善了航标工人的劳动条件、提高了工作效率。  相似文献   

19.
Standard design procedures and simulation tools for marine structures are aimed primarily for use by the offshore oil and gas. Mooring system restoring forces acting on floating offshore structures are obtained from a quasi-static mooring model alone or from a coupled analysis based on potential flow solvers that do not always consider nonlinear mooring-induced restoring forces, fluid structure interactions, and associated hydrodynamic damping effects. This paper presents the validation of a dynamic mooring system analysis technique that couples the dynamic mooring model with a Reynolds-averaged Navier-Stokes (RANS) equations solver. We coupled a dynamic mooring model with a RANS equations solver, and analyzed a moored floating buoy in calm water, regular and irregular waves and validated our motion and mooring force predictions against experimental measurements. The mooring system consisted of three catenary chains. The analyzed response comprised decaying oscillating buoy motions, linear and quadratic damping characteristics, and tensile forces in mooring lines. The generally favorable comparison of predicted buoy motions and mooring forces to experimental data confirmed the reliability of our implemented coupling technique to predict system response. Additional comparative results from a potential flow solver demonstrated the benefits of the coupled dynamic mooring model with RANS equations. The successful validated tool of coupling the dynamic mooring model with the RANS solver is available as open source, and it shows the potential of the coupled methodology to be used for analyzing the moored offshore structures.  相似文献   

20.
The present study is aimed at determining the confidence limits of design wave parameters derived from numerical modeling—for both extremes and operational conditions—over the Central and Western Mediterranean Sea. The paper presents the methodology and results of an extensive validation activity conducted on a chain of medium-resolution third-generation wave models used for hindcast purposes. The stringent requirements of state-of-the-art coastal and offshore engineering applications over this area make the adoption of medium- or high-resolution hindcast wave and wind models almost mandatory because of the complex coastal geometry, bathymetry, and orography that in turn lead to large variations of the design wave parameters even within small regions. The chains of nested meteorological and wave models used in this hindcast study belong to the ETA and WaveWatch III families, respectively. In this study the wind and wave numerical models have been run over the past 20 years, with increasing resolutions of the wave models from 0.2° up to 0.04°. The results presented herein have 0.1° resolution for both wind and wave models. The wave data obtained are compared with available measurements from 14 wave buoys in coastal zones in the Central and Western Mediterranean Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号