首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
As a result of the continued increase in travel demand coupled with the need for tighter security and inspection procedures after September 11, border crossing delay has recently become a critical issue with tremendous economic and social costs. The current paper develops multi-server queuing models to estimate border crossing delay in support of a predictive traveler information system for the crossings. Two classes of multi-server models are considered: (1) models with exponential inter-arrival times and Erlang service times; and (2) a more generic model with a Batch Markovian Arrival Process (BMAP) and phase types (PH) services. As a case study, the models are developed based on real-time traffic volume and inspection time data collected at one of the major US–Canada border crossings, the Peace Bridge, and their transient solution is obtained using heuristic methods. For validation, the queueing models’ estimates are compared to the results from a detailed microscopic traffic simulation model of the Peace Bridge border crossing. The comparison shows that the transient queueing model, along its heuristic solution algorithm, is capable of predicting border crossing delay. Finally, a set of sensitivity analysis tests are conducted, and the developed models are incorporated within an optimization framework to help inform border crossing management strategies.  相似文献   

2.
We compare two common ways of incorporating service frequency into models of airline competition. One is based on the so called s-curve, in which, all else equal, market shares are determined by frequency shares. The other is based on schedule delay—the time difference between when travelers wish to travel and when flights are available. We develop competition models that differ only with regard to which of the above approaches is used to capture the effect of frequency. The demand side of both models is an approximation of a nested logit model which yields endogenous travel demand by including not traveling in the choice set. We find symmetric competitive equilibrium for both models analytically, and compare their predictions concerning market frequency with empirical evidence. In contrast to the s-curve model, the schedule delay model depicts a more plausible relationship between market share and frequency share and accurately predicts observed patterns of supply side behavior. Moreover, the predictions from both models are largely the same if we employ numerical versions of the model that capture real-world aspects of competition. We also find that, for either model, the relationship between airline frequency and market traffic is the same whether frequency is determined by competitive equilibrium, social optimality, or social optimality with a break-even constraint.  相似文献   

3.
Traffic incidents are a principal cause of congestion on urban freeways, reducing capacity and creating risks for both involved motorists and incident response personnel. As incident durations increase, the risk of secondary incidents or crashes also becomes problematic. In response to these issues, many road agencies in metropolitan areas have initiated incident management programs aimed at detecting, responding to, and clearing incidents to restore freeways to full capacity as quickly and safely as possible. This study examined those factors that impact the time required by the Michigan Department of Transportation Freeway Courtesy Patrol to clear incidents that occurred on the southeastern Michigan freeway network. These models were developed using traffic flow data, roadway geometry information, and an extensive incident inventory database. A series of parametric hazard duration models were developed, each assuming a different underlying probability distribution for the hazard function. Although each modeling framework provided results that were similar in terms of the direction of factor effects, there was significant variability in terms of the estimated magnitude of these impacts. The generalized F distribution was shown to provide the best fit to the incident clearance time data, and the use of poorer fitting distributions was shown to result in severe over‐estimation or under‐estimation of factor effects. Those factors that were found to impact incident clearance times included the time of day and month when the incident occurred, the geometric and traffic characteristics of the freeway segment, and the characteristics of each incident. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper suggests using a proportional hazard model to predict personal income, for the purpose of imputing missing income data in household travel surveys. The model has a hazard function that comprises two multiplicative components: (1) a non-parametric baseline hazard function that is dependent only on the income level and (2) a function that is dependent only on the other personal attributes of the survey respondents (excluding income). To estimate and validate the model, data is drawn from a travel characteristics survey conducted in Hong Kong in year 2001. The model is found to have a much higher accuracy when compared with a conventional ordered probit model based on the assumption that the logarithm of income is normally distributed.
C. O. TongEmail:

C.·O. Tong   is an Associate Professor at the Department of Civil Engineering, The University of Hong Kong. He received his B.Sc. (Eng.) degree from the University of Hong Kong, M.Sc. (Transportation Engineering) degree from Leeds University and Ph.D. degree from Monash University. His research interests are in transport demand modeling and dynamic network modeling. Jackie K. L. Lee   worked as a Research Assistant at the Department of Civil Engineering, The University of Hong Kong during the period from March 2004 to April 2005. She received her B.Eng. and M.Eng. degrees in Civil Engineering from the Hong Kong Polytechnic University. She is a Chartered Engineer and is also Corporate Members of the Hong Kong Institution of Engineers and the Institution of Structural Engineers.  相似文献   

5.
Abstract

This paper develops a model for estimating unsignalized intersection delays which can be applied to traffic assignment (TA) models. Current unsignalized intersection delay models have been developed mostly for operational purposes, and demand detailed geometric data and complicated procedures to estimate delay. These difficulties result in unsignalized intersection delays being ignored or assumed as a constant in TA models.

Video and vehicle license plate number recognition methods are used to collect traffic volume data and to measure delays during peak and off-peak traffic periods at four unsignalized intersections in the city of Tehran, Iran. Data on geometric design elements are measured through field surveys. An empirical approach is used to develop a delay model as a function of influencing factors based on 5- and 15-min time intervals. The proposed model estimates delays on each approach based on total traffic volumes, rights-of-way of the subject approach and the intersection friction factor. The effect of conflicting traffic flows is considered implicitly by using the intersection friction factor. As a result, the developed delay model guarantees the convergence of TA solution methods.

A comparison between delay models performed using different time intervals shows that the coefficients of determination, R 2, increases from 43.2% to 63.1% as the time interval increases from 5- to 15-min. The US Highway Capacity Manual (HCM) delay model (which is widely used in Iran) is validated using the field data and it is found that it overestimates delay, especially in the high delay ranges.  相似文献   

6.
This study aims to develop a maximum likelihood regression tree-based model to predict subway incident delays, which are major negative impacts caused by subway incidents from the commuter’s perspective. Using the Hong Kong subway incident data from 2005 and 2009, a tree comprising 10 terminal nodes is selected to predict subway incident delays in a case study. An accelerated failure time (AFT) analysis is conducted separately for each terminal node. The goodness-of-fit results show that our developed model outperforms the traditional AFT models with fixed and random effects because it can overcome the heterogeneity problem and over-fitting effects. The developed model is beneficial for subway engineers looking to propose effective strategies for reducing subway incident delays, especially in super-large-sized cities with huge public travel demand.  相似文献   

7.
ABSTRACT

In current urban planning practice, macroscopic transport demand and assignment models are essential for the evaluation of mid- and long-term land use developments and infrastructure investments. The credibility of their projections strongly depends on their ability to reproduce present day traffic volumes. Obviously, a simplified model of reality will display some shortcomings, and the effect of these is asserted by quality measures that quantify the divergence from observed traffic volumes. There is, however, only rough guidance regarding acceptable ranges of these measures. Most of the literature on this subject approach these ranges from below, by discussing measures attained by operational models and using these as a benchmark, or by using the adverse effects of modelling errors to derive a minimum quality level. On the contrary, this study suggests upper limits for quality measures by analysing year-on-year variations in traffic volumes that result from changing land use and infrastructure.  相似文献   

8.
The need to increase measurement accuracy of fuel consumption and pollutant emissions in vehicles is forcing the market to develop chassis-dyno test cells that reproduce on-road conditions realistically.Air-cooling is key to vehicle performance. It is therefore critical that the design of a test cell guarantees realistic cooling of all vehicle components, as important errors in fuel consumption and emissions measurements may otherwise arise. In a test-room, a blower placed in front of the vehicle supplies the cooling air. While there are some guidelines in the literature for the selection of fans required for emissions measurements for standard driving cycles, the information for designing the air supply system for specific tests in other areas is scarce.New Real Driving Emissions (RDE) legislation will force manufacturers to perform on-road measurements of pollutants. This represents a significant challenge due to the variability of conditions coming from non-controlled parameters. In order to optimize vehicles, different tests are performed in cells equipped with a chassis-dyno where the on-road flow field around the vehicle is reproduced as closely as possible.This work provides some guidelines for the definition of the airflow supply system of chassis-dyno facilities for vehicle optimization tests, based on a CFD analysis of the flow characteristics around the vehicle. By comparison with the solution obtained for a vehicle in real road driving conditions, the exit section of the blower and the distance between the blower exit and the car that best reproduce realistic on-road flow conditions in a test room are determined.  相似文献   

9.
Macroscopic pedestrian models for bidirectional flow analysis encounter limitations in describing microscopic dynamics at crosswalks. Pedestrian behavior at crosswalks is typically characterized by the evasive effect with conflicting pedestrians and vehicles and the following effect with leading pedestrians. This study proposes a hybrid approach (i.e., route search and social force-based approach) for modeling of pedestrian movement at signalized crosswalks. The key influential factors, i.e., leading pedestrians, conflict with opposite pedestrians, collision avoidance with vehicles, and compromise with traffic lights, are considered. Aerial video data collected at one intersection in Beijing, China were recorded and extracted. A new calibration approach based on a genetic algorithm is proposed that enables optimization of the relative error of pedestrian trajectory in two dimensions, i.e., moving distance and angle. Model validation is conducted by comparison with the observed trajectories in five typical cases of pedestrian crossing with or without conflict between pedestrians and vehicles. The characteristics of pedestrian flow, speed, acceleration, pedestrian-vehicle conflict, and the lane formation phenomenon were compared with those from two competitive models, thus demonstrating the advantage of the proposed model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号