首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
三索面斜拉桥索塔锚固区的应力场分析   总被引:1,自引:0,他引:1  
斜拉桥索塔的受力特性对桥梁的整体性能影响重大,斜拉索锚固区是索塔受力最为复杂的部位,保证其受力安全、合理是设计者最关心的问题之一.对某特大桥的三索面索塔锚固区恒载作用下的应力场进行了三维精细有限元分析,探讨了锚固区应力场的分布规律,总结了锚固区的受力特点,对锚固区的结构设计提出了一些建议.建议和结论对类似结构具有参考和借鉴意义.  相似文献   

2.
高速铁路纵连式无砟轨道锚固体系试验研究   总被引:2,自引:0,他引:2  
为获得梁体与轨道的合理制约关系,设计了纵连式无砟轨道锚固体系,并进行了现场试验.通过对锚固体系应力、位移和路基表层压力的监测分析,获得了锚固体系在设计荷载作用下的应力、位移变化及路基表层压力的分布规律.试验结果表明:双柱型主端刺锚固体系满足设计要求,为CRTSⅡ型板式无砟轨道结构更好地应用于客运专线提供了重要依据.  相似文献   

3.
从一般拉伸构件工作的锚固条件出发,依据工作过程中锚固压力、摩擦特性、锚固段的几何尺寸等因素之间约束关系建立锚固段的力学模型.借助模型和摩擦极限状态的平衡原理、材料的等强度原理,导出脆性材料和塑性材料的锚固段的截面几何尺寸与锚固压力与工作轴力之间的微分方程,讨论不同形式的边界条件.给出圆截面与矩形截面受拉构件在已知截面分布时的锚固压力分布计算公式和在已知锚固压力分布时的截面分布计算公式,以及锚固段长度的计算表达.  相似文献   

4.
为探讨连续刚构拱组合桥锚固区的局部应力,以宜万铁路宜昌长江大桥——连续刚构-钢管混凝土柔性拱新型组合桥为工程背景,分别进行了顶、底板模型试验,并与数值计算进行了比较,获得了锚固区局部应力的传递规律.此外,讨论了锚固区裂缝产生的原因.研究结果表明:在纵向预应力张拉过程中,箱梁锚固区始终处于弹性工作状态,锚垫板下混凝土受力是安全的;模型各测试截面混凝土测点应力与施加的荷载呈线性关系,结构处于弹性受力状态.  相似文献   

5.
为探讨扁平钢箱梁斜拉桥拉索梁端新式锚固结构的疲劳性能,根据锚拉板与主梁的不同连接方式,分析、比较了锚拉板与箱梁外腹板连接和锚拉板与箱梁顶板连接时不同的受力特点及传力路径.用ANSYS有限元软件对锚拉板与箱梁外腹板连接的锚固结构进行了数值模拟,以确定锚固结构的应力分布规律及应力集中的重点部位;在数值分析的基础上,采用足尺模型对拉索梁端锚固区进行了疲劳试验.结合有限元分析和疲劳试验结果,对桥梁设计寿命期内新式锚拉板式锚固结构连接焊缝的抗疲劳性能进行了研究.结果表明:拉索梁端锚固结构板件间连接焊缝的疲劳强度满足设计要求;锚拉板与箱梁外腹板焊接的连接方式降低了应力集中程度,提高了构造细节的疲劳等级,改善了结构的抗疲劳性能.  相似文献   

6.
对后锚固法检测混凝土强度试验进行相关力学分析,结果表明:后锚固法在反力环反力的作用下,存在界限破坏深度.利用智能优化算法中的经验遗传-单纯形算法进行回归分析,以试验数据为基础,采用优化算法进行数据处理,建立了后锚固法检测混凝土强度的测强曲线.  相似文献   

7.
对连续箱梁采用体外预应力方法加固的重要问题是体外预应力束的布置、定位与锚固构造.结合一座3跨PC连续箱梁加固工程,研究并提出了体外预应力钢束连续双折线形设置与分散锚固的方法,并且采用了轻型钢锚固块和轻型钢转向块,既能达到对箱梁加固的效果,又避免了对箱梁不利的影响.  相似文献   

8.
为了研究含粗骨料超高性能混凝土(UHPC)与带肋钢筋的粘结性能,对6组钢筋-粗骨料UHPC中心拉拔试件进行了加载测试,研究了钢筋直径、保护层厚度、粘结锚固长度对粘结应力的影响,基于厚壁圆筒理论和拉梅解答分析了保护层厚度的影响. 采用回归分析的方法得到了极限粘结应力的计算公式,并采用其他文献的试验结果验证了该公式的有效性. 研究结果表明:粗骨料UHPC与钢筋的粘结锚固破坏模式与活性粉末混凝土(RPC)相似,有“刮犁破坏”和“劈裂破坏”两种模式;粗骨料UHPC所需钢筋的最小保护层厚度略大于RPC,粘结锚固长度与RPC相近;保护层厚度、粘结锚固长度存在相互影响,粘结锚固长度足够时可适当减小保护层厚度;提出了带肋钢筋在粗骨料UHPC中保护层厚度和锚固长度的建议值.   相似文献   

9.
为了分析铁路矮塔斜拉桥索梁锚固区在索力作用下的应力分布,以新建的某铁路矮塔斜拉桥为工程背景,采用实体单元和梁单元建立了索梁锚固区的整体有限元模型,对索梁锚固区在最不利荷载组合作用下的受力性能进行了研究,提出的实体单元和梁单元组合使用的整体有限元模型可将矮塔斜拉桥索梁锚固区的边界问题处理的更加合理准确,丰富了索梁锚固区空间应力的分析方法.结果表明:1)索梁锚固区的锚块在靠近纵梁处有应力集中现象,设计中应注意增加分布钢筋和表面抗裂钢筋网片,以提高结构抗裂性;2)成桥阶段的索梁锚固区整体处于较合理的受压状态,说明该结构截面尺寸设计合理;3)研究方法可为铁路用矮塔斜拉桥的索梁锚固区的局部应力分析提供参考.  相似文献   

10.
体外预应力结构技术及工程应用   总被引:3,自引:0,他引:3  
对体外预应力结构中的转向块、锚固系统进行了结构分析,并介绍了体外预应力技术在结构修复工程中的锚固系统和施工监控经验,为体外预应力技术的工程应用提供了参考依据.  相似文献   

11.
针对建造于软土地层中的锚碇沉井基础受力和变形情况复杂且无完善的计算理论的现状,文章以某跨江悬索桥锚碇沉井基础为工程背景,建立了三维实体有限元模型,系统地分析了锚碇沉井基础在多荷载工况下的工作性状,结果表明:锚碇沉井基础极限承载状态的主要控制因素是锚碇前端土体极限承载力,为新型锚碇沉井基础优化设计提供参考.  相似文献   

12.
应用有限元软件ABAQUS对比分析了马蹄形和圆形两种横断面隧道式锚碇的承载性能。围岩及锚碇采用实体单元模拟,围岩与锚碇之间设置接触面单元;围岩采用扩展的Mohr-Coulomb屈服模型;使用超载法分析锚碇的极限承载能力。计算结果表明:马蹄形断面在边墙与拱以及边墙与底板的交界处出现较大应力集中,圆形断面应力分布均匀;在断面面积相等的情况下,相同缆力作用下圆形断面锚碇位移小于马蹄形锚碇约22%,极限承载力高出马蹄形锚碇约18%,说明圆形断面承载性能优于马蹄形断面。  相似文献   

13.
采用ANSYS软件对某悬索桥隧道锚碇系统进行二维弹塑性数值模拟,分析隧道锚碇及围岩体在张拉荷载下的变形状态及时效特性,对锚碇与围岩间相互作用和锚碇结构安全进行了研究。  相似文献   

14.
斜拉索的拉索锚固是将一个拉索的局部集中力安全、均匀地传递到塔柱的重要受力构造,本文通过龙江路大桥索塔锚固区的设计,介绍了预应力粗钢筋在斜拉索锚固中的应用。结果表明,采用预应力粗钢筋作为斜拉索锚固的方式具有锚固可靠、操作简便、耐久性好的特点。  相似文献   

15.
基于荷载传递法的锚杆锚固段荷载变形分析   总被引:1,自引:0,他引:1  
基于荷载传递法,推导了锚固段的荷载传递基本微分方程;结合Kelvin问题的位移解,得到锚固段的应力分布的解析表达式,认为锚杆体的直径、外荷载及锚杆体弹性模量与岩体剪切模量的比值等因素影响着锚固段的应力水平。计算结果表明:锚杆体直径增加到一定程度会使锚杆所受的最大剪应力快速增加;在较高的初始力条件下,锚固段前端应力集中现象明显;较小的锚杆体弹性模量与岩体剪切模量比值有利于锚固段应力的均匀分布。  相似文献   

16.
为了解析计算悬索桥隧道式锚碇的侧摩阻力,基于弹性理论,并考虑锚碇前、后锚端边界条件,建立了锚碇侧摩阻力的计算表达式。首先,根据实际锚碇受力情况建立了锚碇分析模型;其次,在Mindlin解的剪应力一般表达式基础上,引入锚碇前、后锚端剪应力为0的条件以及锚碇的静力平衡条件予以修正,得到锚碇侧摩阻力的解析式;最后,引用模型试验结果验证了解析方法的合理性,并结合工程实例进一步揭示了锚碇侧摩阻力的分布规律. 研究结果表明:锚碇摩阻应力沿轴向呈单峰曲线分布模式,解析计算与三维数值模拟的最大摩阻应力平均误差约为8.5%;当主缆拉力较小(1倍设计缆力)时,锚碇自重可导致较小的侧摩阻力;当主缆拉力较大(3.5倍设计缆力)时,锚碇自重对侧摩阻力影响相对减弱;随着主缆拉力逐渐增大,锚碇侧表面可能出现局部剪切破坏,侧摩阻力将产生重分布.   相似文献   

17.
路基边坡喷锚防护施工控制   总被引:2,自引:0,他引:2  
刘皓琨 《北方交通》2007,(6):117-119
介绍了喷锚技术的原理,并通过工程实例对喷锚防护的施工方法及质量控制要点进行了较详细的论述.  相似文献   

18.
港口交通资源承载力预测预警模型   总被引:3,自引:1,他引:2  
根据航道交通容量计算方法,建立了航道资源静态承载力模型,基于锚地规模计算方法和基准判定参数,建立了锚地资源承载力分级模型。应用排队理论,将港口码头泊位的服务强度与航道资源、锚地资源的承载力模型相融合,构建了港口交通资源承载力综合预测预警模型,并以中国南方某港口进行实例验证。计算结果表明:应用预测预警模型,2008年与2010年的航道资源承载力指数分别为0.405与0.608,锚地资源承载力综合指数分别为1.489与0.600,2008年的港口码头服务强度为0.565,计算结果与事实相符;按照货物吞吐量的增长速度,预计到2015年,最小、最大航道资源承载力指数分别为0.593与0.796,预计到2020年,最小、最大航道资源承载力指数分别为0.685与0.944;基于现有锚地资源,预计到2015年,水深小于5m的最大锚地资源承载力指数为0.177,水深在5~10m的最大锚地资源承载力指数为1.037,水深大于10m的最大锚地资源承载力指数为1.294,预计到2020年,水深小于5m的最大锚地资源承载力指数为0.210,水深在5~10m的最大锚地资源承载力指数为1.231,水深大于10m的最大锚地资源承载力指数为1.535;预计到2015年,港口码头的最小泊位服务强度为0.858,预计到2020年,港口码头的最小泊位服务强度为0.994。  相似文献   

19.
朱倩 《北方交通》2012,(7):46-48
刚性自锚式悬索桥的锚固区结构和受力较复杂。以平顶山建设路立交桥为例,运用有限元程序Mi-das/Civil建立该桥梁的整体计算模型,有限元程序ANSYS建立边跨主缆锚固区梁段的局部计算模型,对主缆锚固区进行空间局部应力分析。得出结论:箱梁切开截面端与顶板交接处的正中心位置及主缆锚固位置处局部应力超限,出现明显应力集中,需要进行局部加强处理;计算结果具有较高的实用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号