首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A roadway departure (RwD) crash is defined as a crash that occurs after a vehicle crosses an edge line or a center line, or otherwise leaves the designated travel path. RwD crashes account for approximately 50% of all traffic fatalities in the U.S. Additionally, crashes related to roadside fixed objects such as trees, utility poles, or other poles (TUOP) make up 12–15% of all fatal RwD crashes in the U.S. Data spanning over seven years (2010–2016) shows that TUOP crashes account for approximately 22% of all fatal crashes in Louisiana, which is significantly higher than the national statistic. This study aims to determine the effect of crash, geometric, environmental, and vehicle characteristics on TUOP crashes by applying the fast and frugal tree (FFT) heuristics algorithm to Louisiana crash data. FFT identifies five major cues or variable threshold attributes that contribute significantly to predicting TUOP crashes. These cues include posted speed limit, primary contributing factor, highway type, weather, and locality type. The balanced accuracy is around 56% for both training and test data. The current model shows higher accuracies compared to machine learning models (e.g., support vector machine, CART). The present findings emphasize the importance of a comprehensive understanding of factors that influence TUOP crashes. The insights from this study can help data-driven decision making at both planning and operation levels.  相似文献   

2.
In spite of enormous improvements in vehicle safety, roadway design, and operations, there is still an excessive amount of traffic crashes resulting in injuries and major productivity losses. Despite the many studies on factors of crash frequency and injury severity, there is still further research to be conducted. Tree and utility pole/other pole related (TUOP) crashes present approximately 12 to 15% of all roadway departure (RwD) fatal crashes in the U.S. The count of TUOP crashes comprise nearly 22% of all fatal crashes in Louisiana. From 2010 to 2016, there were 55,857 TUOP crashes reported in Louisiana. Individually examining each of these crash reports is not a realistic option to investigate crash factors. Therefore, this study employed text mining and interpretable machine learning (IML) techniques to analyze all TUOP crashes (with available crash narratives) that occurred in Louisiana from 2010 to 2016. This study has two major goals: 1) to develop a framework for applying machine learning models to classify injury levels from unstructured textual content, and 2) to apply an IML framework that provides probability measures of keywords and their association with the injury classification. The present study employed three machine learning algorithms in the classification of injury levels based on the crash narrative data. Of the used modeling techniques, the eXtreme gradient boosting (XGBoost) model shows better performance, with accuracy ranging from 0.70 to 24% for the training data and from 0.30% to 16% for the test data.  相似文献   

3.
Teenagers have been emphasized as a critical driver population class because of their overrepresentation in fatal and injury crashes. The conventional parametric approaches rest on few predefined assumptions, which might not always be valid considering the complicated nature of teen drivers' crash characteristics that are reflected by multidimensional crash datasets. Also, individual attributes may be more speculative when combined with other factors. This research employed joint correspondence analysis (JCA) and association rule mining (ARM) to investigate the fatal and injury crash patterns of at-fault teen drivers (aged 15 to 19 years) in Louisiana. The unsupervised learning algorithms can explore meaningful associations among crash categories without restricting the nature of variables. The analyses discover intriguing associations to understand the potential causes and effects of crashes. For example, alcohol impairment results in fatal crashes with passengers, daytimes severe collisions occur to unrestrained drivers who have exceeded the posted speed limits, and adverse weather conditions are associated with moderate injury crashes. The findings also reveal how the behavior patterns connected with teen driver crashes, such as distracted driving in the morning hours, alcohol intoxication or using cellphone in pickup trucks, and so on. The research results can lead to effectively targeted teen driver education programs to mitigate risky driving maneuvers. Also, prioritizing crash attributes of key interconnections can help to develop practical safety countermeasures. Strategy that covers multiple interventions could be more effective in curtailing teenagers' crash risk.  相似文献   

4.
基于道路交通事故数据探究事故影响因素对于认识事故的影响因素、提高交通安全水平具有重要意义。利用近年来国内典型较严重道路交通事故数据,应用泊松模型和负二项模型,以区分事故形态的方式建立追尾事故、侧碰事故及撞行人事故的事故死亡率的道路影响因素分析模型。这些模型以三类事故中涉及人员的死亡数为因变量,以一系列道路因素为自变量,将事故涉及人数作为偏移变量。模型的具体形式以过离散系数及赤池信息量准则(AIC)为依据进行选择。结果显示,追尾事故的死亡率与道路等级、路侧防护设施显著相关;侧碰事故则与天气、路表情况、路口路段位置、坡度以及道路结构有关;撞行人事故与路表情况、道路等级、车道数、平曲线半径有关。本文拓展了事故严重性研究的深度,其研究成果对于更好地利用重特大事故的深入调查数据有现实意义,也可为事故分析及道路设计等提供借鉴。   相似文献   

5.
This study investigates the relationship between lane-change-related crashes and lane-specific, real-time traffic factors. It is anticipated that the real-time traffic data for the two lanes—the vehicle's lane (subject lane) and the lane to which that a vehicle intends to change (target lane)—are more closely related to lane-change-related crashes, as opposed to congregated traffic data for all lanes. Lane-change-related crash data were obtained from a 62-mile long freeway in Southeast Wisconsin in 2012 and 2013. One-minute traffic data from the 5- to 10-minute interval prior to the crashes were extracted from an immediately upstream detector station and two immediately downstream stations from the crash location. Weather information was collected from a major historical weather database. A matched case-control logistic regression was used for analysis. Results show that the following factors significantly affect the probability of a lane-change-related crash: average flow into the target lane at the first downstream station, the flow ratio at the second downstream station, and snow conditions. Additionally, the average speed in the target lane at the first downstream station contributes to the occurrence of lane-change crashes during snowy conditions. According to the model, the probability of a lane-change-related crash under real-time traffic conditions can aid in flagging potential crash-prone conditions. The identified contributing factors can help traffic operators select traffic control and management countermeasures to proactively mitigate lane-change-related crashes.  相似文献   

6.
掌握城市道路交通事故空间分布特征是城市道路交通安全管理的重要基础。基于深圳市2014~2016年的道路交通事故数据,首先应用地理编码方法对原始事故记录进行空间定位,形成事故的空间分布。其次针对考虑/不考虑路网密度的2种情况,应用密度分析方法对道路交通事故多发的区域和事故严重程度较高的区域进行鉴别,比较2种情况下区域分布的差异并分析造成这种差异的可能原因。最后利用异常点分析和热点分析2种空间聚类分析模型对事故严重程度较高的区域进行进一步鉴别,并对密度分析和聚类分析2种方法得到的结果进行了比较。密度分析结果表明:就事故频度而言,深圳市中心城区单位面积上的交通事故频度较高,而郊区单位长度道路上的交通事故分布更为密集;就事故严重程度而言,郊区的交通事故平均严重程度高于市中心区域。造成上述差异的原因可能与郊区道路限速较高等因素有关。聚类分析结果与密度分析结果相近,在郊区形成了高严重程度的事故聚类,而在中心城区形成了低严重程度的事故聚类,说明郊区的交通事故严重程度总体高于市中心区域。从2种方法的比较来看,密度分析简单易行,有助于交通管理部门对城市交通事故空间分布特征直观快速的了解;聚类分析可精确到事故点,为精细化的交通安全管理工作提供支撑。研究结果表明基于密度分析和聚类分析的研究方法对于确定道路交通事故空间分布特征有良好的作用。  相似文献   

7.
Bus right hook (BRH) crashes at intersections are one of the most common types of crashes for bus carriers, which accounted for as high as 16% of fatal and injury crashes involving large buses at intersections in Taiwan. A BRH crash occurs when a bus and another vehicle traveling in the same direction head into an intersection, but the bus driver makes a right turn across the path of the through-moving vehicle, and both vehicles collide. This study responds to the research needs to identity factors associated with BRH crashes by utilizing in-vehicle data recorder (IVDR) data. A four step analysis procedure was developed, including (1) video data coding, (2) crash sequence analysis to identify crash contributing factors, (3) a case-control study to examine the relationship between the crash contributing factors and crash occurrence, and (4) modeling crash risk in terms of the crash contributing factors to better understand the crash generating process. This study first identified the existence of driver unattended time as the time between when the driver last checked the right back mirror to finally steering for a right turn, indicating the time period wherein the driver did not track the through vehicle on the right side using the right back mirror. It was found that BRH crashes could be attributed to the concurrence of unattended time and the speed difference between the bus and through vehicle. Several recommendations are discussed based on the results to further develop countermeasures to reduce this type of crash.  相似文献   

8.
In developing countries, road traffic crashes involving pedestrians have become a foremost concern. At present, road safety assessment plans and selection of interventions are primarily restricted to traditional approaches that depend on the investigations of historical crash data. However, in developing countries such as India, the availability, consistency, and accuracy of crash data are major concerns. In contrast, proactive approaches such as studying road users' risk perception have emerged as a substitute method of examining potential risk factors. An individual's risk perception offers vital information on probable crash risk, which may be beneficial in detecting high-risk locations and major causes of crashes. Since the pedestrian fatality risk is not uniform across the urban road network level, it may be expected that pedestrians' perceived risk measured in terms of “crossing difficulty” would also vary across the sites. In this perspective, the present paper establishes a mathematical association between the pedestrians' perceived “crossing difficulty” and actual crashes. The model outcome confirms that pedestrians' perceived crossing difficulty is a good surrogate of fatal pedestrian crashes at the intersection level in Kolkata City, India. Subsequently, to examine the impact of traffic exposures, road infrastructure, land use, spatial factors, and pedestrian-level attributes on pedestrians' “crossing difficulty”; a set of Ordered Logit models are developed. The model outcomes show that high vehicle and pedestrian volume, vehicular speed, absence of designated bus stop, the presence of inaccessible pedestrian crosswalk, on-street parking, lack of signalized control (for both vehicle and pedestrian), inadequate sight distance, land use pattern, slum population, pedestrian-vehicular post encroachment time, waiting time before crossing, road width, and absence of police enforcement at an intersection significantly and positively increase pedestrian's crossing difficulty at urban intersections. To end, the model findings are advantageously utilized to develop a set of countermeasures across 3E's of road safety.  相似文献   

9.
This paper presents an evaluation of risk factors for highway crashes under mixed traffic conditions. The basis of selecting study sites was abutting land use, roadway, and traffic characteristics. Accordingly, the study selected thirteen segments on the existing highway network in the state of West Bengal of India, covering a wide spectrum of such road attributes. A systematic investigation based on site-specific accident data to capture the highway sections' safety features revealed that the crash rate has steadily increased for years with traffic regardless of roadway category and conditions. A number of risk factors that affect road accidents were identified; they are mid-block access, pavement and shoulder conditions, vehicle involvement, time of day, and road configuration, i.e., two and multi-lane. The empirical observation indicates that the crash rate is relatively lower on multi-lane highways; however, the severity of any crash on such a road is relatively high. Notably, the crash frequencies on such roads are less during daylight hours due to the lane-based unidirectional traffic movement. This is quite the opposite during nighttime when drivers exhibit an inability to meet traffic contingencies, thereby increasing crash risk. The majority of crashes on two-lane highways are, on the other hand, due to unsafe driving manoeuvers. The study also observed that frequent mid-block accesses and poor shoulder conditions reduce scopes to rectify driving errors and increase crash risk as a consequence. The paper subsequently suggests proactive approaches to identify safety deficits at the time of planning and designing.  相似文献   

10.
Most of the information necessary for driving a vehicle is regarded as visual information. In spite of its importance, visibility conditions at the time of a crash are often not documented at a high level of detail. Past studies have not examined the quantified values of visibility and its association with crashes. The current study merged data collected from the National Oceanic and Atmospheric Administration (NOAA) with 2010–2012 Florida crash data. From the thousands of logged weather events compiled by the NOAA, the researchers isolated periods of normal visibility and comparable periods of reduced visibility in a matched-pairs study. The NOAA data provided real visibility score based on the spatiotemporal data of the crashes. Additionally, the crash data, obtained from Roadway Information Database (RID), contains several geometric and traffic variables that allow for effects of factors and visibility. The study aims to associate crash occurrence under different levels of visibility with factors included in the crash database by developing ordinal logistic regression. The intent is to observe how different visibility conditions contribute to a crash occurrence. The findings indicate that the likelihood of a crash increase during periods of low visibility, despite the tendency for less traffic and for lower speeds to prevail during these times. The findings of this study will add valuable knowledge to the realm of the impact of visibility in the way of using and designing appropriate countermeasures.  相似文献   

11.
Crash forecasting enables safety planners to take appropriate actions before casualty or loss occurs. Identifying and analyzing the attributes influencing forecasting accuracy is of great importance in road crash forecasting. This study aims to model the forecasting accuracy of 31 provinces using their macroeconomic variables and road traffic indicators. Iran's road crashes throughout 2011–2018 are calibrated and cross-validated using the Holt-Winters (HW) forecasting method. The sensitivity of crash forecast reliability is studied by a regression model. The results suggested that the root mean square error (RMSE) of crash prediction increased among the provinces with higher and more variant average monthly crashes. On the contrary, the accuracy of crash prediction improved in provinces with higher per capita GDP, and higher traffic exposure. A 1% increase in crash variability, average historical crash count, GDP per capita, and traffic exposure, respectively, resulted in a 0.65%, 0.52%, −0.38%, and −0.13% change in the RMSE of forecasting. The addition of traffic exposure and macroeconomic factors significantly enhanced the model fit and improved the adjusted R-squared by 14% compared to the reduced model that only used the historical average and variability of crash count as the independent variables. The findings of this research suggest planners and policymakers should consider the notable influence of macroeconomic factors and traffic indicators on the crash forecasting accuracy.  相似文献   

12.
Intersection safety continues to be a crucial issue throughout the United States. In 2016, 27% of the 37,461 traffic fatalities on U.S. roadways occurred at or near intersections. Nearly 70% of intersection-related fatalities occurred at unsignalized intersections. At such intersections, vehicles stopping or slowing to turn create speed differentials between vehicles traveling in the same direction. This is particularly problematic on two-lane highways. Research was performed to analyze safety performance for intersections on rural, two-lane roadways, with stop control on the minor roadway. Roadway, traffic, and crash data were collected from 4148 stop-controlled intersections of all 64 Parishes (counties) statewide in Louisiana, for the period of 2013 to 2017. Four count approaches, Poisson, Negative Binomial (NB), Zero-inflated Poisson (ZIP) and Zero-inflated Negative Binomial (ZINB) were used to model the number of intersection crashes for different severity levels. The results indicate that ZIP models provide a better fit than all other models. In addition to traffic volume, larger curve radii of major and minor roads and wider lane widths of major roads led to significantly smaller crash occurrences. However, higher speed limits of major roads led to significantly greater crash occurrences. Four-leg stop-controlled intersections have 35% greater total crashes, 49% greater fatal and injury crashes, and 25% greater property damage only (PDO) crashes, relative to three-leg intersections.  相似文献   

13.
This study aims to investigate the contributing factors affecting the occurrence of crashes while lane-changing maneuvers of drivers. Two different data sets were used from the same drivers' population. The first data set was collected from the traffic police crash reports and the second data set was collected through a questionnaire survey that was conducted among 429 drivers. Two different logistic regression models were developed by employing the two sets of the collected data. The results of the crash occurrence model showed that the drivers' factors (gender, nationality and years of experience in driving), location and surrounding condition factors (non-junction locations, light and road surface conditions) and roads feature (road type, number of lanes and speed limit value) are the significant variables that affected the occurrence of lane-change crashes. About 57.2% of the survey responders committed that different sources of distractions were the main reason for their sudden or unsafe lane change including 21.2% was due to mobile usage. The drivers' behavior model results showed that drivers who did sudden lane change are more likely to be involved in traffic crashes with 2.53 times than others. The drivers who look towards the side mirrors and who look out the windows before lane-change intention have less probability to be involved in crashes by 4.61 and 3.85 times than others, respectively. Another interesting finding is that drivers who reported that they received enough training about safe lane change maneuvering during issuing the driving licenses are less likely to be involved in crashes by 2.06 times than other drivers.  相似文献   

14.
高速公路隧道构造特殊且通行环境复杂,因而通常事故多发。为探究高速公路隧道路段与开放路段事故影响因素和严重程度致因机理的差异,采集沪昆高速邵怀段2011—2016年期间1 537起事故为研究样本;以事故发生路段为响应变量构建逻辑回归模型,解释各种风险因素对事故发生路段倾向性的影响差异;分别针对隧道路段与开放路段建立模型研究事故伤害严重程度的影响因素。建立二元Logit回归模型分析事故的发生倾向性和2类路段的事故严重程度的影响因素;采用随机参数Logit模型以反映异质性条件对参数的影响。统计表明:与疲劳驾驶、未保持安全距离相关的事故发生在隧道路段的概率更高,其事故发生概率分别是开放路段的2.373和2.482倍;与隧道路段事故严重程度正相关的因素包括下坡(坡度2%以上)、夏季和超速行驶,其中下坡(坡度2%以上)段的严重事故发生的概率为上坡(坡度2%以上)的3.397倍,夏季的严重事故发生概率为秋季的3.951倍,超速行驶相关的严重事故发生概率为其他不当驾驶行为的4.242倍;与开放路段事故严重程度正相关的因素包括超速行驶和疲劳驾驶,其中超速行驶相关的严重事故概率是其他不当驾驶行为的2.713倍,疲劳驾驶相关的严重事故概率是其他不当驾驶行为的4.802倍。研究表明,山区高速公路隧道路段与开放路段的事故发生概率及其严重程度的影响因素存在一定的差异性,研究结论可为山区高速公路差异管理方案制定提供依据。   相似文献   

15.
This study aims to determine risk factors contributing to traffic crashes in 9,176 fatal cases involving motorcycle in Malaysia between 2010 and 2012. For this purpose, both multinomial and mixed models of motorcycle fatal crash outcome based on the number of vehicle involved are estimated. The corresponding model predicts the probability of three fatal crash outcomes: motorcycle single-vehicle fatal crash, motorcycle fatal crash involving another vehicle and motorcycle fatal crash involving two or more vehicles. Several road characteristic and environmental factors are considered including type of road in the hierarchy, location, road geometry, posted speed limit, road marking type, lighting, time of day and weather conditions during the fatal crash. The estimation results suggest that curve road sections, no road marking, smooth, rut and corrugation of road surface and wee hours, i.e. between 00.00 am to 6 am, increase the probability of motorcycle single-vehicle fatal crashes. As for the motorcycle fatal crashes involving multiple vehicles, factors such as expressway, primary and secondary roads, speed limit more than 70 km/h, roads with non-permissible marking, i.e. double lane line and daylight condition are found to cause an increase the probability of their occurrence. The estimation results also suggest that time of day (between 7 pm to 12 pm) has an increasing impact on the probability of motorcycle single-vehicle fatal crashes and motorcycle fatal crashes involving two or more vehicles. Whilst the multinomial logit model was found as more parsimonious, the mixed logit model is likely to capture the unobserved heterogeneity in fatal motorcycle crashes based on the number of vehicles involved due to the underreporting data with two random effect parameters including 70 km/h speed limit and double lane line road marking.  相似文献   

16.
基于GIS的道路交通事故分析系统实现了交通事故位置点的地图标注和信息采集,从而可以对北京市全市的道路交通事故状况进行动态监控。系统设计中涉及的事故信息采集和地理信息技术符合公安部的有关技术规范,模型参数可根据实际情况进行调整。该系统对提高道路事故隐患排查、事故防治等具有良好的应用前景。  相似文献   

17.
为了探究行人事故的发生机理,分析影响行人交通安全的显著因素,收集上海市中心城区263个交通分析小区(TAZ)的行人事故、道路、人口及土地利用数据,并开展行人宏观安全研究。考虑到TAZ之间存在的空间相关性,建立考虑空间相关性的贝叶斯负二项条件自回归模型,在条件自回归模型中对比分析了5种不同的空间权重矩阵,包括0~1邻接矩阵、边界长度矩阵、分析单元中心距离倒数矩阵、事故空间中心距离倒数矩阵这4种既有矩阵,以及首次引入的宏观安全建模中的分析单元中心距离多阶矩阵。结果表明:分析单元中心距离多阶矩阵的模型拟合效果和事故预测准确度均显著优于既有的4种空间权重矩阵,证明了在宏观安全建模过程中考虑研究对象交通特征(居民步行平均出行距离等)的必要性;人口数量、主干道长度、次干道长度、路网密度等因素均与行人事故呈现显著正相关,平均交叉口间距、三路交叉口比例等因素与行人事故呈显著负相关;相较于高等、低等土地利用强度,中等土地利用强度对行人事故的影响最大。  相似文献   

18.
Pedestrian fatality and injury is one of the most concerning issues around the globe. The predictors for such mishaps have been investigated in the developed countries through econometric models and are proven useful techniques. Such studies in the context of developing countries, especially for urban cities, are however still very scarce. Using five years reported pedestrian crash data, this study looks into the performance of three statistical models - Multinomial Logit (MNL), Ordered Logit (OL) and Partial Proportional Odds (PPO) model while examining the impact of various attributes related to pedestrian crashes severity outcomes for Dhaka metropolitan city in Bangladesh. The comparative analysis reveals that the performance of the PPO model is relatively better for the available dataset in terms of identifying critical risk factors. Undivided roadway, heavy vehicles, unfit vehicles, adult drivers with no seat belt use, young and older pedestrians, pedestrian road crossing action are found to be associated with higher probability of fatal injuries. In contrast, one-way traffic movement, daytime, motorcycles and mid-aged pedestrians decrease the likelihood of fatal injury. Based on these identified risk factors, a combined 3-E approach has been suggested to reduce the severity levels of pedestrian in the event of crash occurrence.  相似文献   

19.
Crash Prediction Models (CPMs) have been used elsewhere as a useful tool by road Engineers and Planners. There is however no study on the prediction of road traffic crashes on rural highways in Ghana. The main objective of the study was to develop a prediction model for road traffic crashes occurring on the rural sections of the highways in the Ashanti Region of Ghana. The model was developed for all injury crashes occurring on selected rural highways in the Region over the three (3) year period 2005–2007. Data was collected from 76 rural highway sections and each section varied between 0.8 km and 6.7 km. Data collected for each section comprised injury crash data, traffic flow and speed data, and roadway characteristics and road geometry data. The Generalised Linear Model (GLM) with Negative Binomial (NB) error structure was used to estimate the model parameters. Two types of models, the ‘core’ model which included key exposure variables only and the ‘full’ model which included a wider range of variables were developed. The results show that traffic flow, highway segment length, junction density, terrain type and presence of a village settlement within road segments were found to be statistically significant explanatory variables (p < 0.05) for crash involvement. Adding one junction to a 1 km section of road segment was found to increase injury crashes by 32.0% and sections which had a village settlement within them were found to increase injury crashes by 60.3% compared with segments with no settlements. The model explained 61.2% of the systematic variation in the data. Road and Traffic Engineers and Planners can apply the crash prediction model as a tool in safety improvement works and in the design of safer roads. It is recommended that to improve safety, highways should be designed to by-pass village settlements and that the number of junctions on a highway should be limited to carefully designed ones.  相似文献   

20.
应用贝叶斯网络对城市平面交叉口交通事故进行了分析。以3 584起交通事故数据为分析依据,基于专家知识和数据融合方法建立了城市平面交叉口交通事故分析的贝叶斯网络结构,利用服从Drichlet分布的贝叶斯方法对贝叶斯网络进行了参数学习。结合网络模型,应用联合树引擎算法推断了在车辆类型、交叉口类型、交叉口控制方式和交通参与者等因素的影响下平面交叉口交通事故类型的变化。研究结果表明,在城市平面交叉口中,由自行车导致的正面碰撞事故的概率最大,为22.83%,由于交通参与者转向不当引起的侧面碰撞的概率为23.44%,同时也易导致刮擦事故的发生;交通参与者的感知判断失误导致尾随碰撞事故的概率为23.62%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号