首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用1∶1足尺模型对列车竖向静荷载作用下CRTSⅡ型板式无砟轨道结构受力特性进行试验,并对CRTSⅡ型板式无砟轨道梁板和梁体理论分析模型进行验证。按实际工艺在实验室内建造一段CRTSⅡ型板式无砟轨道,通过试验机和分配梁模拟同一转向架2个轮对的竖向荷载,利用应变片、应变计、压力盒和位移计等测试元件,对钢轨、轨道板、水泥乳化沥青砂浆和底座的受力与变形进行测试。根据无砟轨道梁板和梁体理论,建立CRTSⅡ型板式无砟轨道结构有限元分析模型,对轨道结构在相同荷载工况下的受力与变形进行理论分析。将试验结果与计算结果进行对比,验证CRTSⅡ型板式无砟轨道梁板和梁体理论模型的正确性和适应性。  相似文献   

2.
为深入系统研究高速铁路桥上CRTSⅡ型纵连板式无砟轨道温度场分布规律,制作无砟轨道后张法预应力混凝土简支箱梁1/4缩尺试验模型,通过开展快速升降温试验,分析CRTSⅡ型无砟轨道二维温度场分布规律,提出轨道系统横、竖向温度三维分布形式。研究结果表明:高速铁路桥上CRTSⅡ型无砟轨道竖向温度及温差分布呈三段式阶梯形;横向温度分布呈抛物线形;CA砂浆层是影响轨道系统横、竖向温度场分布的最主要因素;轨道系统竖向负温差主要产生于轨道板;轨道板与CA砂浆层间竖向温度梯度最为显著,最高达4.5℃/cm;横向最大负温差为-4.4℃,最大正温差为5.5℃,分别产生于底座板上部和中部;轨道系统横、竖向温度三维分布呈三段式阶梯形曲面。研究结果可为高速铁路桥上CRTSⅡ型无砟轨道温度效应设计和研究提供参考。  相似文献   

3.
研究目的:为得到设有超高的无砟轨道温度场分布的时变规律,建立无砟轨道横竖向温度梯度荷载模式,在某客运专线圆曲线段上CRTSⅡ型纵连板式无砟轨道中埋设温度传感器对其温度场进行了长期连续观测。研究结论:(1)无砟轨道昼夜温度变化较大,表面最高日温差可达24.7℃,平均日温差达19.0℃;(2)随着距表面深度的增加,无砟轨道温度变化幅值逐渐减小,峰值出现时间不断滞后;(3)底座板底面最大日温差为6.1℃,平均为5.0℃;(4)纵连板式无砟轨道的竖向温度梯度可拟合为指数曲线,与铁路桥梁设计规范规定的箱梁竖向温度梯度分布在形状上较为符合;(5)纵连板式无砟轨道横向温度梯度分为轨道板和底座板两类,轨道板横向温度梯度可采用二次函数拟合回归,底座板横向梯度可采用线性分段函数拟合;(6)研究成果可为我国中部地区高速铁路设计温度荷载模式提供指导作用。  相似文献   

4.
为研究严寒地区夏季、冬季极端天气条件下,CRTSⅠ型板式无砟轨道温度场分布问题,应用Abaqus有限元软件,基于气象数据和热传导理论,建立CRTSⅠ型板式无砟轨道三维瞬态温度场计算模型,分析板式无砟轨道横、竖向温度场分布情况.得到以下结论:(1)CRTSⅠ型板式无砟轨道瞬时温度场呈对称分布,轨道板内部温度场变化情况滞后...  相似文献   

5.
潘勋  周小勇  陈鹰  倪林 《铁道建筑》2020,(5):98-101
为研究CRTSⅢ型无砟轨道温度场分布规律,在昌赣客运专线外进行足尺无砟轨道板温度场监测,基于统计学原理分析冬季轨道结构温度变化规律并提出适合CRTSⅢ型无砟轨道的竖向温度梯度预估模型.研究结果表明:CRTSⅢ型无砟轨道结构温度场受外界环境影响较大,其中轨道板顶面温度变化最为明显,沿深度方向各结构层温度峰值有明显的滞后现象;竖向温度梯度大于横向温度梯度,对结构温度影响起主导作用;日太阳辐射总量和最大温度梯度具有较好的相关性,据此建立了冬季日最大温度梯度经验回归公式,可为不同气候条件下的CRTSⅢ型无砟轨道的温度梯度研究提供参考.  相似文献   

6.
为研究桥上CRTSⅡ型板式无砟轨道混凝土的力学特性,对5块轨道板单元进行静载试验,分析桥上CRTSⅡ型板式无砟轨道轨道板的开裂荷载、极限荷载、开裂弯矩和破坏弯矩等力学参数。并在静载试验研究的基础上,结合2010版《混凝土结构设计规范》和国内外混凝土结构疲劳特性的研究成果,确定适用于服役期间组合荷载下桥上CRTSⅡ型板式无砟轨道混凝土疲劳寿命预测模型的混凝土S-N曲线。研究结果表明:桥上CRTSⅡ型板式无砟轨道混凝土抗拉强度和抗压强度可取2010版《混凝土结构设计规范》中的规定值;可采用修正宋玉普混凝土S-N曲线或Goodman平均应力修正的Tepfers混凝土S-N曲线作为桥上CRTSⅡ型板式无砟轨道混凝土S-N曲线。本文的研究成果可为服役期间组合荷载下桥上CRTSⅡ型板式无砟轨道混凝土疲劳寿命预测模型的建立提供试验依据。  相似文献   

7.
桥上CRTSⅡ型板式无砟轨道系统梁轨相互作用的传力体系与既有的有砟轨道和单元板式无砟轨道线路的轨道结构受力变形特征有较大的不同。利用ANSYS有限元软件对桥上CRTSⅡ型板式无砟轨道的受力变形特征进行分析,选择32 m简支梁和(48+80+48)m连续梁开展了长期温度荷载效应监测,分析桥上CRTSⅡ型板在温度荷载作用下的结构受力变形特征。结果表明,在降温和升温过程中,简支梁和连续梁梁体温度伸缩量与温度的分布规律相吻合,"两布一膜"减少了梁轨间相互作用力。说明桥上CRTSⅡ型板式无砟轨道设计原理和设计方法是合理的,为相关技术规范的制定提供了科学依据。  相似文献   

8.
将桥上CRTSⅡ型板式无砟轨道结构视为多层层状体系,基于传热学基本原理,考虑模型边界条件,建立轨道结构温度场分析模型,以日照时长、日辐射总量、日平均气温和日温差为自变量,回归分析提出轨道结构竖向温度分布预估模型,研究桥上CRTSⅡ型板式无砟轨道结构的竖向温度场分布。研究结果表明:利用理论模型计算得到的轨道结构温度场分布与实测结果对比具有较好一致性;将各环境因素视为独立变量,轨道结构表面温度最值、轨道板温差随日照时长、日辐射总量、日平均气温、日温差成线性变化,轨道结构内部温度在当表面温度取最值时随深度成3次曲线线形变化;根据预估模型所得的轨道板表面温度最值、轨道板温差、轨道结构竖向温度预估值与实测值、理论值误差小于2%;利用温度场预估模型可根据气象数据快速计算得到轨道结构竖向温度分布,可为精确计算轨道结构温度效应提供参考。  相似文献   

9.
研究目的:目前无砟轨道结构在高速铁路中应用广泛,但对其疲劳问题的研究却并不多见。为了探究路基上CRTSⅡ型无砟轨道结构体系在恒载、温度和列车往复荷载作用下的疲劳力学性能,本文基于等效静力法实现了CRTSⅡ型板式无砟轨道结构的疲劳力学性能及损伤发展的三维仿真分析,揭示出CRTSⅡ型板式无砟轨道结构体系在运营过程中的经时性能演变规律。研究结论:(1)冬季轨道板大部分区域处于受拉状态,假缝处可能发生开裂损伤;夏季轨道板基本处于受压状态,仅板底假缝附近局部受拉;(2)轨道板、CA砂浆、支承层最大应力随着时间增加而减小,竖向位移差随着时间增加而增大,但都在约20年后趋于稳定;(3)轨道板除假缝(拼缝)位置外基本无严重疲劳损伤,且各条假缝(拼缝)的开裂损伤发展会在5年内趋于稳定,最终各断面的开裂面积比大约稳定在0.7左右;(4)本文可为路基上CRTSⅡ型板式无砟轨道结构体系的设计、维护和维修提供一定的理论依据。  相似文献   

10.
为研究高温季节高速铁路桥上CRTSⅡ型板式无砟轨道的温度分布规律,制作CRTSⅡ型板式无砟轨道-预应力混凝土简支箱梁1:4缩尺试验模型.通过开展夏季典型高温天气的温度试验,分析高速铁路桥上CRTSⅡ型板式无砟轨道结构的温度分布变化规律,研究无砟轨道横、竖向温度分布型式.结果表明:在非阳光直射条件下,高速铁路桥上C RT...  相似文献   

11.
CRTSⅡ型板式无砟轨道在高温季节起拱、胀板,危害运营安全。基于运营及养护维修实践,分析得出温度荷载是轨道板胀板的主要因素,其中整体升温荷载引起结构纵向伸缩变形,温度梯度荷载引起轨道板翘曲变形。另外,轨道板与CA砂浆层间受到水、温度荷载、列车荷载等外部因素作用,导致结构分层,轨道板与底座板不能共同受力,削弱了纵连轨道结构体系的整体抗压刚度、竖向约束和稳定性能,是胀板病害进一步发展恶化的次要因素。为了有效防止CRTSⅡ型板式无砟轨道胀板,在不破坏设计结构的前提下,提出轨道板预先植筋加固处理的整治措施,并在实践中取得了良好的效果。后续可根据胀板机理,进一步开展隔热涂层、CA砂浆改性等方面的研究。  相似文献   

12.
以京沪高速铁路CRTSⅡ型板式无砟轨道为研究对象,通过对轨道结构早期纵连阶段温度场长达半年的现场观测,研究CRTSⅡ型板式无砟轨道结构早期温度场的分布及变化规律。结果表明:轨道板面温度、轨道板温度梯度及气温三者的变化规律基本一致,且呈周期性变化,变化周期均为1d;随着轨道结构深度的增加,其温度和温度梯度的波动幅度均逐渐减小且相位差逐渐增大,当深度超出轨道板厚度(20cm)后,二者波动幅度很小且基本趋于稳定;CA砂浆层和支承层的温度梯度变化较小;板面温度的高低决定了轨道板温度梯度的大小。采用最小二乘法对板式轨道结构早期温度场进行回归分析,建立轨道板内不同深度处的温度预估模型及轨道板面最高温度、轨道板最大温度梯度的预估模型,相关系数为0.812~0.968,表明预估模型精度较高。  相似文献   

13.
对列车荷载通过桥梁而梁体发生挠曲变形时,CRTSⅠ型板式无砟轨道结构受到的附加挠曲力进行分析。首先推导了桥梁挠曲变形对无砟轨道结构受到的附加挠曲力的计算方法,然后分别对我国时速300~350km、200—250km的几种主要桥梁、上CRTSⅠ型板式无砟轨道的轨道板和底座板受到的附加挠曲力进行计算,为CRTSⅠ型板式无砟轨道的结构设计提供参考。  相似文献   

14.
温度梯度荷载对桥上无砟轨道几何形位的影响分析   总被引:2,自引:2,他引:0  
我国在设计桥上无缝线路时,桥梁温度荷载按照相关规范规定采用均匀温度荷载,这与桥梁在自然环境中所受到的温度梯度荷载存在一定的差异。基于梁轨相互作用原理,利用有限元方法,建立桥上CRTSⅢ型板式无砟轨道有限元模型,分别计算分析在均匀温度和竖向温度梯度作用下桥梁变形对无砟轨道结构几何形位的影响,有益于进一步深入研究桥梁温度荷载的合理取值。结果表明:与均匀温度荷载相比,竖向温度梯度荷载对桥上无砟轨道几何形位影响很大,且主要影响桥上无砟轨道的高低几何形位,对无砟轨道的水平几何形位也有一定影响,因此建议在设计桥上无缝线路时,考虑桥梁温度梯度荷载,并对桥上无砟轨道结构的几何形位进行限制。  相似文献   

15.
为探讨温度荷载作用下既有离缝无砟轨道结构层间损伤发展规律及上拱变形对轨道结构力学特性的影响,基于有限单元法和界面损伤内聚力模型,建立CRTSⅡ型板式无砟轨道有限元模型.计算结果表明:温度梯度荷载作用下,层间损伤萌生于离缝区与黏结区衔接处板角位置,并随温度梯度的持续增大斜向发展;黏结区损伤横向贯通后,轨道板竖向位移存在明...  相似文献   

16.
CRTSⅡ型板式无砟轨道结构是由钢筋混凝土组成的多层叠加连续结构,轨道结构温度变化受气温影响较大。在合肥地区小半径曲线地段的CRTSⅡ型板式无砟轨道结构长期实时监测的基础上,对温度数据进行了统计分析,研究表明:(1)CRTSⅡ型板式无砟轨道结构中钢轨、轨道板和底座板温度的变化趋势与气温的变化趋势相同,且呈现以日为周期的不等幅值的周期性变化;(2)轨温最大值比气温高19℃左右,轨温最小值与气温近似。这与《铁路无缝线路设计规范》(TB 10015-2012)中结论接近;(3)自上到下各层轨道结构的温度变化存在相位滞后现象;(4)根据无砟轨道结构温度变化的特点,采用正弦函数拟合出高温天气下钢轨、轨道板、底座板的温度时程方程和曲线,拟合精度较高,结果较为可靠。  相似文献   

17.
基于位于小半径曲线区段的桥上CRTSⅡ型板式无砟轨道的运营期温度与变形监测数据,分析了CRTSⅡ型板式无砟轨道的稳定性并提出了养修建议。结果表明:连续4~5 d高温天气后轨道板温度达到最高值,因此持续高温超过3 d就须加强现场检查,以消除安全隐患;CRTSⅡ型板式无砟轨道结构整体性好,钢轨与轨道板纵向相对位移很小,在轨道结构良好的情况下可适当减少防爬位移观测点数量,但对特殊结构处及结合部仍应长期观测;在设计温度梯度范围内,轨道板垂向稳定性满足要求。  相似文献   

18.
为指导严寒地区高速铁路无砟轨道结构选型,结合严寒地区高速铁路的工程特点,分析严寒地区对无砟轨道的需求和选型原则。通过介绍我国双块式无砟轨道,CRTSⅠ型、Ⅱ型和Ⅲ型板式无砟轨道的主要特点及应用情况,从严寒地区高速铁路无砟轨道的适应性、施工性、养护维修及经济性等方面进行对比分析。结果表明:严寒地区应优先选用预制轨道板,CRTSⅠ型和Ⅲ型板式轨道具有较好的严寒适应性和耐久性,但CRTSⅢ型板式轨道的经济性更好,建议严寒地区无砟轨道应优先选用CRTSⅢ型板式无砟轨道。  相似文献   

19.
CRTSⅢ型板式无砟轨道是我国自主研发、具有自主知识产权的一种新型无砟轨道,其布板设计、制板、施工及安装等整套技术特点不同于其他无砟轨道结构。为了提高CRTSⅢ无砟轨道结构的适应性和推广应用范围,对CRTSⅢ轨道板布板设计、制造与施工定位测量的关键技术进行研究,研制了"CRTSⅢ型板式无砟轨道布板设计与定位测量系统"。该系统包含CRTSⅢ型板式无砟轨道布板设计软件、精调软件及CRTSⅢ型无砟轨道板精调标架装置。介绍"CRTSⅢ型板式无砟轨道布板设计与定位测量系统"的设计与实现过程,重点对系统的设计思想、总体结构、关键技术和主要特点进行阐述。  相似文献   

20.
CRTSⅡ型板式无砟轨道采用纵连结构,轨道板刚度较大,一旦路基发生不均匀沉降,将影响无砟轨道结构的受力.本文基于有限元分析理论,建立了三维有限元计算模型,分析了路基不均匀沉降和列车荷载共同作用下CRTSⅡ型板式无砟轨道结构的力学特性.研究结果表明:(1)随着不均匀沉降的出现和发展,轨道结构的应力峰值迅速增长,当沉降量大...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号