首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
答:列车制动系统由控制系统和基础制动系统组成。传统的制动系统由司机控制制动管的压力变化来控制各车辆的制动缸压力;其基础制动系统则接受上述的制动缸压力,通过杠杆比率的放大,实施闸瓦与车轮踏面的磨擦制动,将列车的动能转换为热能达到列车制动的目的。其特点是:  相似文献   

2.
列车制动系统是保证列车安全运行的关键技术,更加精确快速的控制列车管和制动缸压力都对机车制动控制系统提出了更高的要求。以HXD2电力机车中使用的新型制动机为基础,利用减压阀、高速开关电磁阀、压力传感器、经典PID控制的方式,以AMEsim软件为平台搭建机车列车管预控压力控制系统(即均衡风缸压力控制),并分别仿真分析机车在充风缓解、初制动、全制动(制动区)、紧急制动4个关键制动工况下对列车管预控压力的控制特性。  相似文献   

3.
SS3型电力机车现有的空气制动装置主要由101型机车分配阀和制动器构成。101分配阀通过作用管或列车管压力的变化来控制制动缸的充风或排风。由于现有的制动系统环节多以及个别部件工作性能不完全可靠,致使机车在运行中制动缸不上闸,尤其是机车分配阀故障,单机...  相似文献   

4.
重载列车在制动时,由于列车前后部制动力不一致而产生巨大的车钩力和剧烈的纵向冲动,极易造成列车断钩和脱轨事故。研究利用电力线作为通信介质,采用网络控制系统和每辆车作为一个网络节点,结合我国货车120空气制动机,实现有线电控空气制动。研究表明:由电控空气制动系统(ECP系统)控制列车制动,列车中所有车辆的制动和缓解动作几乎同步进行,全部车辆制动缸开始升、降压的时间差在0.2 s以内;在网络条件允许的范围内,装有ECP系统的车辆制动和缓解的同步性不受列车编组辆数的影响,各车辆制动缸的升压、降压曲线形状几乎相同;车辆制动缸压力的控制精度达到制动命令要求值的±20 kPa。由于ECP系统实现了对列车制动和缓解的同步控制,能够保证长大重载列车安全运行。  相似文献   

5.
我国货运列车一直使用500kPa和600kPa两种列车管定压,两种列车管定压带来列车管理和运用中的一系列问题,要求统一列车管定压呼声很高。但列车管定压对列车制动性能影响一直没有明确结论,因此统一列车管定压工作迟迟不能推进。使用基于气体流动理论的列车空气制动仿真系统,仿真分析了两种主管定压下重载列车的常用制动,紧急制动和常用制动后缓解的制动系统性能,系统的分析了列车管定压对列车制动和缓解性能的影响。计算结果表明,当常用制动减压量在140kPa以下时,主管定压600kPa时制动能力略强,约增强1.5%左右,其主要原因制动缸充风略快。当全制动时,主管定压600kPa比500kPa制动缸平衡压强高约74kPa,制动能力增强5.4%;主管定压600kPa时全制动减压量范围扩大,制动缸压强变化范围增大,列车调控能力更强。紧急制动时,定压600kPa制动能力比500kPa能力更强,制动距离缩短11.4%,主要原因是副风缸初压高,紧急制动后制动缸最终压力也高。常用制动缓解时,在制动系统漏泄较小时主管定压对列车再充风能力影响不大,但当制动系统漏泄较大时,列车管定压越高,再充风时间越长,在中度漏泄时,再充风时间约延长13.9%。  相似文献   

6.
杜啸  杜传仁 《铁道机车车辆》2007,27(B10):105-106
铁路运输中,机车车辆是通过车钩编组成列车运行的,列车管是一根贯通整列车的、两端封闭的、压力空气的输送管和制动机的操纵管,其传递制动信息的速度不超过声音的传播速度330m/s,列车中各车辆制动缸开始充气的时间总是沿列车长度依次滞后,列车编组越长,尾部车辆制动缸开始充气的时间越滞后。制动初期,列车头部和尾部车辆制动缸的压力总存在一定压力差,列车扩编到一定辆数后,这个压力差将达到最大压力差(制动缸最高压力)。  相似文献   

7.
正JZ-7型空气制动机中,通过工作风缸与列车管压力比较,控制作用风缸的充气、排气,实现机车制动缸的充气、排气,即机车的制动、缓解。在某机务段配属的内燃机车中,工作风缸充气缓慢已成为JZ-7型制动机的典型故障之一。由于工作风缸充气不足导致机车制动时制动缸压力偏低甚至不产生制动缸压力,威胁列车运行安全。对这一故障发生的原因进行分析,并提出相应的故障判断及处理方法。  相似文献   

8.
货物列车新型智能电控空气制动系统的理论研究与实验   总被引:1,自引:1,他引:0  
我国货物列车制动系统一直沿用自动空气制动系统,由于制动波速无法超过声速,致使我国重载货物列车的开行受到一定的制约.目前,国外货运发达的国家如美国、加拿大、澳大利亚等正在进行电控空气制动系统(ECPB)的研究,并部分投入运营考核,这是目前国际上最先进的列车制动系统,而我国的这项技术至今仍是空白.本文创新研究了一种智能型电控空气制动系统,从设计、制动力的分配、制动指令的定义及列车制动智能控制的软件实现方面,对长大货物列车新型制动系统进行了系统的理论研究,并设计了相应的试验台.室内试验表明,该制动系统具有良好的自适应性,具有高的鲁捧性,各项主要制动参数均能达到北美AARS-4300标准,尤其是关键指标制动缸控制压力与目标压力误差仅为±10kPa,其精度已超过北美AAR标准规定的±20kPa.该系统具有广阔的应用前景.  相似文献   

9.
铁道部铁路运用规章第三章第 32条 (3)明确规定 :制动机置常用制动位 ,减压 14 0kPa (列车主管压力为 6 0 0kPa时减压 170kPa)不得发生紧急制动 ,并确认制动缸活塞行程符合规定 ,1min内列车管压力下降不大于 2 0kPa。而在运用中因基础制动装置、闸调器故障 ,管系漏泄、截断塞门漏泄、各风缸漏泄、空重车调整装置等漏泄、GK阀、 10 3阀、 12 0阀故障造成制动机发生自然制动现象时有发生 ,其中因GK阀、10 3阀、 12 0阀故障造成制动机自然制动故障占 80 % ,因此把故障车在列车制动机性能试验时及时找出来 ,把车辆发生自然制动隐患杜绝在列…  相似文献   

10.
制动缸是制动夹钳单元的核心部件之一,其性能好坏直接影响到列车制动系统状态,随着中国铁路的大力发展,列车存量及新造市场增大,对智能化检测制动缸设备提出了更高的要求。基于自动化和集成化设计的制动缸试验台能够有效提高制动缸检测精度和效率,是减少劳动力的有效设备。其通过自动调整止动块位置、弹性刚性块自动切换及自动拧动制动缸调整螺母等动作,实现对制动缸各个试验项点的全自动检测;同时将气动测试系统有效集成,大大提高了空间利用率,缩短了制造周期,批量一致性得到了有效保证。  相似文献   

11.
现在国内外机车、客车及动车组上的基础制动大多采用单元制动的形式,基础制动单元中最重要的部件就是单元制动缸,而单元制动缸在其活塞管中均集成有闸片(或闸瓦)间隙自动调整器(以下简称闸调器).这些间隙调整器大多采用两只多线非自锁螺母来自动调整闸片间隙,又因螺母布置不同有两种主要的结构形式,本文只介绍其中一种.  相似文献   

12.
田学华 《铁道车辆》1995,33(12):157-161,152
在SF25Z型准高速客车上采用的制动装置包括:F8阀+电空制动复合形式的基础制动、电子防滑装置三大部分。装置中的紧急中磁阀的设置缩短了制动距离并减少了列车冲;支盘形制动制动率对制动距离起决定性的作用;电子防滑装置通过控制制动缸压力来达到防滑的目的。  相似文献   

13.
列车空气制动系统仿真的有效性   总被引:11,自引:0,他引:11  
魏伟 《中国铁道科学》2006,27(5):104-109
根据气体流动理论建立货运列车空气制动系统模型,概述管路内气体流动方程、制动系统中用到的各种边界方程和容器内气体压力的计算方法。利用基于气体流动理论开发的列车制动仿真系统,计算长、短编组列车的常用制动、缓解和紧急制动特性,并与试验结果进行对比。结果表明,计算得到的列车管、制动缸、副风缸、加缓风缸等的空气压力随时间的变化与试验结果非常接近,说明基于气体流动理论的空气制动仿真系统能够很好地模拟制动系统中气体流动和阀内动作过程。该仿真系统可以模拟最多4台机车组成的组合列车,不仅能仿真制动系统动态压力变化过程,而且其计算结果可以用于制动距离的计算,并通过数据传送实现列车纵向动力学分析程序的无缝连接。  相似文献   

14.
针对现有铁路货车空气制动缸存在泄漏、缓解性能与制动效率相制约、制动力一致性差等技术问题,并结合研发重载列车纯电制动系统的需求,研制出了一种以电能替代压力空气的多功能电制动缸。该多功能电制动缸采用具有精准输出能力的伺服直流电机以及具有单向自锁特性的蜗轮蜗杆传动结构,实现了多功能、高集成、准输出设计,具有自动驻车、自动制动及缓解、手动制动及缓解、自动调整闸瓦间隙等功能,同现有空气制动缸相比,制动力输出一致性好,功能多,智能化、集成化程度高,检修周期长,安全可靠性高。  相似文献   

15.
HXD2电力机车制动系统   总被引:11,自引:5,他引:6  
介绍了HXD2电力机车制动系统,重点分析和阐述了Eurotrol制动系统工作原理、列车管压力控制、电子控制单元、机车空气分配阀组成及功能、直通制动、自动停放制动、机车重联、列车断钩保护等功能。  相似文献   

16.
HXD2型电力机车Eurotrol制动机系统具有补风功能,无法在制动时自动隔离列车管充风通路,在车辆减压制动后,由于列车管压力的上下波动,造成列车管的自动补风,特别是列车牵引辆数较少时,极易引起列车后部车辆的自然缓解。本文分析了Eurotrol制动机的制动原理,介绍了司机室设置了抑制自动制动缓解开关Z(N)的目的及使用时机,并结合现场实际,提出了改进建议。  相似文献   

17.
根据北京5号线地铁列车的制动缸压力控制要求、控制原理以及相应试验结果,对制动响应时间、冲动限制性能、制动缸压力等进行了分析研究,并得出相关结论。  相似文献   

18.
1 前言 KZW-4G型货车空重车自动调整装置是安装在货车上以取代手动空重车转换机构.它是根据随车辆载重变化的枕簧(轴箱弹簧)高度变化作为控制信号,通过测重机构去控制设在空气制动机与制动缸之间的调整阀,由调整阀来控制制动缸空气压力的大小,从而使车辆在不同载重的状况下获得相应的制动力.即使在列车速度较高时,处于不同载重状况下的车辆既不会因制动力太大而擦伤车轮,也不会因制动力不足而不能保证在规定的制动距离内停车.总之,它使不同载重的车辆的制动率趋于一致,从而能有效地改善车辆的制动性能.  相似文献   

19.
采用列车空气制动和纵向动力学联合仿真系统研究制动缸充气时间对万吨列车和快捷货车的车钩力、制动距离与纵向加速度的影响。计算结果表明,长大列车制动缸充气时间对车钩力影响较大,快捷货车制动缸充气时间主要影响制动距离和列车纵向加速度,因此在长大列车制动系统充气时间设计时必须考虑车钩力因素,在设计运送易碎货物列车制动系统时需要考虑纵向加速度的限制。  相似文献   

20.
无论是直通式还是间接式,世界各国高速列车制动系统多采用电空制动来实现。在分析研究国内外高速列车减速度设计的基础上,结合我国高速列车运营模式及电空复合的实际情况,以充分利用黏着、尽量减少制动距离为目标,设计了CRH380B高速列车制动系统紧急制动减速度曲线。根据该曲线,通过系统仿真的方法,确定了制动缸压力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号