首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article discusses the use of continuous autoregressive models to describe the behavior of traffic indices. From discretely sampled data, second-order differential equation models are constructed to represent dynamic traffic fluctuations as the response of a linear system to a stochastic forcing function. The results are compared to the more common M/G/∞ queueing model approach, and the analysis is demonstrated on time series of aircraft concentration in thirty-one enroute air traffic control sectors.  相似文献   

2.
To mitigate airport congestion caused by increasing air traffic demand, the trajectory‐based surface operations concept has been proposed to improve surface movement efficiency while maintaining safety. It utilizes decision support tools to provide optimized time‐based trajectories for each aircraft and uses automation systems to guide surface movements and monitor their conformance with assigned trajectories. Whether the time‐based trajectories can be effectively followed so that the expected benefits can be guaranteed depends firstly on whether these trajectories are realistic. So, this paper first deals with the modeling biases of the network model typically used for taxi trajectory planning via refined taxiway modeling. Then it presents a zone control‐based dynamic routing and timing algorithm upon the refined taxiway model to find the shortest time taxi route and timings for an aircraft. Finally, the presented algorithm is integrated with a sequential planning framework to continuously decide taxi routes and timings. Experimental results demonstrate that the solution time for an aircraft can be steadily around a few milliseconds with timely cleaning of expired time windows, showing potential for real‐time decision support applications. The results also show the advantages of the proposed methodology over existing approaches. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Decision planning for an efficient fleet management is crucial for airlines to ensure a profit while maintaining a good level of service. Fleet management involves acquisition and leasing of aircraft to meet travelers' demand. Accordingly, the methods used in modeling travelers' demand are crucial as they could affect the robustness and accuracy of the solutions. Compared with most of the existing studies that consider deterministic demand, this study proposes a new methodology to find optimal solutions for a fleet management decision model by considering stochastic demand. The proposed methodology comes in threefold. First, a five‐step modeling framework, which is incorporated with a stochastic demand index (SDI), is proposed to capture the occurrence of uncertain events that could affect the travelers' demand. Second, a probabilistic dynamic programming model is developed to optimize the fleet management model. Third, a probable phenomenon indicator is defined to capture the targeted level of service that could be achieved satisfactorily by the airlines under uncertainty. An illustrative case study is presented to evaluate the applicability of the proposed methodology. The results show that it is viable to provide optimal solutions for the aircraft fleet management model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
This research analyses the environmental footprint of the airline industry in an attempt to highlight potential paths for improvement. We develop a directional economic-environmental distance function (DEED) which accounts for the production of both desirable and undesirable output and the potential for constrained increases in input utilization. This research applies the modeling framework to analyze the potential to reduce noise and airborne pollutants emitted by aircraft–engine combinations given the current state of aeronautical technology. The global aircraft–engine market is viewed from the regulatory perspective in order to compare the single environmental and operational efficient frontier to that of the airline carriers, and environmental objectives. The results of DEED are then applied in order to substitute the fleets serving Schipol, Amsterdam and Arlanda, Stockholm airports in June 2010 with the benchmark aircraft. The results highlight the inefficiencies of the current airline fleets and that the IPCC values of externalities are a magnitude of TEN too low to encourage changes in the global fleet hence the need for government intervention.  相似文献   

5.
Global transportation growth causes several disproportionate impacts on the environment as, for instance, noise pollution which is related to negative effects on human health but also to quiet natural areas decline and biodiversity loss. Besides, sound is a component of ecosystems severely threatened by transportation noise disturbance which is related to negative effects on ecosystem functions. This study deals with aircraft noise impact on natural environments from a multiple innovative perspective. It complementarily combines: noise modeling, field measurements, soundscape audibility, human perception and spatial pattern tools for assessing the chronic growing outdoor noise pollution of ecosystems at landscape scale. Firstly, noticeable soundscape degradation from aircraft overflights has been found causing severe acoustic fragmentation and disruptions in the quietness of a national park in Spain (European Union). Air traffic caused sound pressure levels to increase by approximately 8 decibels from natural ambient levels. Secondly, spatial pattern tools together with noise mapping have been found to be useful in providing decision support for decisions-making through anthropogenic noise impact assessment on the natural environment. Finally, public opinion did not perceive aircraft noise-disruption as being as relevant as that quantified by technical procedures. Although 82% of visitors agree that anthropogenic noise pollution may negatively impact on conservation.  相似文献   

6.
This paper presents analytical models that describe the safety of unstructured and layered en route airspace designs. Here, ‘unstructured airspace’ refers to airspace designs that offer operators complete freedom in path planning, whereas ‘layered airspace’ refers to airspace concepts that utilize heading-altitude rules to vertically separate cruising aircraft based on their travel directions. With a focus on the intrinsic safety provided by an airspace design, the models compute instantaneous conflict counts as a function of traffic demand and airspace design parameters, such as traffic separation requirements and the permitted heading range per flight level. While previous studies have focused primarily on conflicts between cruising aircraft, the models presented here also take into account conflicts involving climbing and descending traffic. Fast-time simulation experiments used to validate the modeling approach indicate that the models estimate instantaneous conflict counts with high accuracy for both airspace designs. The simulation results also show that climbing and descending traffic caused the majority of conflicts for layered airspaces with a narrow heading range per flight level, highlighting the importance of including all aircraft flight phases for a comprehensive safety analysis. Because such trends could be accurately predicted by the three-dimensional models derived here, these analytical models can be used as tools for airspace design applications as they provide a detailed understanding of the relationships between the parameters that influence the safety of unstructured and layered airspace designs.  相似文献   

7.
A sophisticated flight schedule might be easily disrupted due to adverse weather, aircraft mechanical failures, crew absences, etc. Airlines incur huge costs stemming from such flight schedule disruptions in addition to the serious inconveniences experienced by passengers. Therefore, an efficient recovery solution that simultaneously decreases an airline's recovery cost while simultaneously mitigating passenger dissatisfaction is of great importance to the airline industry. In this paper, we study the integrated airline service recovery problem in which the aircraft and passenger schedule recovery problems are simultaneously addressed, with the objective of minimizing aircraft recovery and operating costs, passenger itinerary delay cost, and passenger itinerary cancellation cost.Recognizing the inherent difficulty in modeling the integrated airline service recovery problem within a single formulation (due to its huge solution space and quick response requirement), we propose a three-stage sequential math-heuristic framework to efficiently solve this problem, wherein the flight schedules and aircraft rotations are recovered in the first stage, Then, a flight rescheduling problem and passenger schedule recovery problems are iteratively solved in the next two stages. Time-space network flow representations, along with mixed-integer programming formulations, and algorithms that take advantages of the underlying problem structures, are proposed for each of three stages. This algorithm was tested on realistic data provided by the ROADEF 2009 challenge and the computational results reveal that our algorithm generated the best solution in nearly 72% of the test instances, and a near-optimal solution was achieved in the remaining instances within an acceptable timeframe. Furthermore, we also ran additional computational runs to explore the underlying characteristics of the proposed algorithm, and the recorded insights can serve as a useful guide during practical implementations of this algorithm.  相似文献   

8.
This paper presents a new methodology to determine fleet size and structure for those airlines operating on hub‐and‐spoke networks. The methodology highlights the impact of stochastic traffic network flow effects on fleet planning process and is employed to construct an enhanced revenue model by incorporating the expected revenue optimization model into fleet planning process. The objective of the model is to find a feasible allocation of aircraft fleet types to route legs using minimum fleet purchasing cost, thus ensuring that the expected fleet profit is maximized subject to several critical resource constraints. By using a linear approximation to the total network revenue function, the fleet planning model with enhanced revenue modeling is decomposed into the nonlinear aspects of expected revenue optimization and the linear aspects of determining fleet size and structure by optimal allocation of aircraft fleet types to route legs. To illustrate this methodology and its economic benefits, an example consisting of 6 chosen aircraft fleet types, 12 route legs, and 57 path‐specific origin‐destination markets is presented and compared with the results found using revenue prorated fleet planning formulation. The results show that the fleet size and structure of the methodology proposed in this paper gain 211.4% improvement in fleet profit over the use of the revenue prorated fleet planning approach. In addition, comparison with the deterministic model reveals that the fleet size and structure of this proposed methodology are more adaptable to the fluctuations of passenger demands. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The United States transportation sector consumes 5 billion barrels of petroleum annually to move people and freight around the country by car, truck, train, ship and aircraft, emitting significant greenhouse gases in the process. Making the transportation system more sustainable by reducing these emissions and increasing the efficiency of this multimodal system can be achieved through several vehicle-centric strategies. We focus here on one of these strategies – reducing vehicle mass – and on collecting and developing a set of physics-based expressions to describe the effect of vehicle mass reduction on fuel consumption across transportation modes in the U.S. These expressions allow analysts to estimate fuel savings resulting from vehicle mass reductions (termed fuel reduction value, FRV), across modes, without resorting to specialized software or extensive modeling efforts, and to evaluate greenhouse gas emission and cost implications of these fuel savings. We describe how FRV differs from fuel intensity (FI) and how to properly use both of these metrics, and we provide a method to adjust FI based on mass changes and FRV. Based on this work, we estimate that a 10% vehicle mass reduction (assuming constant payload mass) results in a 2% improvement in fuel consumption for trains and light, medium, and heavy trucks, 4% for buses, and 7% for aircraft. When a 10% vehicle mass reduction is offset by an increase in an equivalent mass of payload, fuel intensity (fuel used per unit mass of payload) increases from 6% to 23%, with the largest increase being for aircraft.  相似文献   

10.
The insufficiency of infrastructure capacity in an air transport system is usually blamed for poor punctuality performance when implementing flight schedules. However, investigations have revealed that ground operations of airlines have become the second major cause of flight delay at airports. A stochastic approach is used in this paper to model the operation of aircraft turnaround and the departure punctuality of a turnaround aircraft at an airport. The aircraft turnaround model is then used to investigate the punctuality problem of turnaround aircraft. Model results reveal that the departure punctuality of a turnaround aircraft is influenced by the length of scheduled turnaround time, the arrival punctuality of inbound aircraft as well as the operational efficiency of aircraft ground services. The aircraft turnaround model proposed is then employed to evaluate the endogenous schedule punctuality of two turnaround aircraft. Model results, when compared with observation data, show that the operational efficiency of aircraft ground services varies among turnarounds. Hence, it is recommended that the improvement of departure punctuality of turnaround aircraft may be achieved from two approaches: airline scheduling control and the management of operational efficiency of aircraft ground services.  相似文献   

11.
The aim of this paper is to investigate the influence of aircraft turnaround performance at airports on the schedule punctuality of aircraft rotations in a network of airports. A mathematical model is applied, composed of two sub-models, namely the aircraft turnaround model (turnaround simulations) and the enroute model (enroute flight time simulations). A Markovian type model is featured in the aircraft turnaround model to simulate the operation of aircraft turnarounds at an airport by considering operational uncertainties and schedule punctuality variance. In addition, stochastic Monte Carlo simulations are employed to carry out stochastic sampling and simulations in both the aircraft turnaround model and the enroute model. Results of simulations show the robustness of the aircraft rotation model in capturing uncertainties from aircraft rotations. The propagation of knock-on delays in aircraft rotations is found to be significant when the short-connection-time policy is used by an airline at its hub airport. It is also found that the proper inclusion of schedule buffer time in the aircraft rotation schedule helps control the propagation of knock-on delays and, therefore, stabilize the punctuality performance of aircraft rotations.  相似文献   

12.
This paper deals with modeling the possible effects of different advanced procedures, existing, innovative, and new air traffic control (ATC) separation rules, and service disciplines on the ultimate landing capacity of a single runway. The first implies a combination and/or exclusive use of conventional and steeper final approach and landing procedures. The second includes the current horizontal, innovative mixed horizontal/vertical and new vertical distance‐based and time‐based separation rules. The last embrace the common First Come, First Served and innovative Priority service discipline. Such increasingly complex and challenging applications are assumed to be based on the new technologies on‐board the aircraft and at the ATC to be developed in the scope of the current United States Next Generation Air Transport System and European Single European Sky ATM Research programs. The convenient analytical models for calculating the runway landing capacity are developed and applied to the generic case of a single runway according to the “what–if” scenario approach. This enables carrying out the sensitivity analysis of the landing capacity with respect to the most influential factors – the ATC advanced operational procedures, separation rules, service disciplines, and aircraft fleet mix. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Aircraft mass is a crucial piece of information for studies on aircraft performance, trajectory prediction, and many other topics of aircraft traffic management. However, It is a common challenge for researchers, as well as air traffic control, to access this proprietary information. Previously, several studies have proposed methods to estimate aircraft weight based on specific parts of the flight. Due to inaccurate input data or biased assumptions, this often leads to less confident or inaccurate estimations. In this paper, combined with a fuel-flow model, different aircraft initial masses are computed independently using the total energy model and reference model at first. It then adopts a Bayesian approach that uses a prior probability of aircraft mass based on empirical knowledge and computed aircraft initial masses to produce the maximum a posteriori estimation. Variation in results caused by dependent factors such as prior, thrust and wind are also studied. The method is validated using 50 test flights of a Cessna Citation II aircraft, for which measurements of the true mass were available. The validation results show a mean absolute error of 4.3% of the actual aircraft mass.  相似文献   

14.
15.
Abstract

When airlines are faced with some unforeseen short-term events, they have to reconstruct their flight schedules. Although aircraft recovery decisions affect passengers, these disrupted passengers and recovering them have not been explicitly considered in most previous aircraft recovery models. This paper presents an assignment model for airline schedule recovery which recovers both aircraft and disrupted passengers simultaneously, using a rolling horizon time framework. Our model examines possible flight retiming, aircraft swapping, over-flying, ferrying, utilization of reserve aircraft, cancellation and passenger reassignment to generate an efficient schedule recovery plan. The model ensures that the schedule returns to normal within a certain time and the objective is to minimize operational recovery aircraft cost, cancellation and delay cost as well as disrupted passenger cost. The model is tested using a data-set with two disruption scenarios. The computational results show that it is capable of handling the integrated aircraft and passenger recovery problem successfully.  相似文献   

16.
The aircraft maintenance scheduling is one among the major decisions an airline has to make during its operation. Though maintenance scheduling comes as an end stage in an airline operation, it has potential for cost savings. Maintenance scheduling is an easily understood but difficult to solve problem. Given a flight schedule with aircraft assigned to it, the aircraft maintenance-scheduling problem is to determine which aircraft should fly which segment and when and where each aircraft should undergo different levels of maintenance check required by the Federal Aviation Administration. The objective is to minimize the maintenance cost and any costs incurred during the re-assignment of aircraft to the flight segments.This paper provides a complete formulation for maintenance scheduling and a heuristic approach to solve the problem. The heuristic procedure provides good solutions in reasonable computation time. This model can be used by mid-sized airline corporations to optimize their maintenance costs.  相似文献   

17.
With the increasing trend of charging for externalities and the aim of encouraging the sustainable development of the air transport industry, there is a need to evaluate the social costs of these undesirable side effects, mainly aircraft noise and engine emissions, for different airports. The aircraft noise and engine emissions social costs are calculated in monetary terms for five different sized airports, ranging from hub airports to small regional airports. The number of residences within different levels of airport noise contours and the aircraft noise classifications are the main determinants for accessing aircraft noise social costs. The environmental impacts of aircraft engine emissions include both aircraft landing and take-off and 30-minute cruise. The social costs of aircraft emissions vary by engine type and aircraft category, depending on the damage caused by different engine pollutants on the human health, vegetation, materials, aquatic ecosystem and climate. The results indicate that the relationship appears to be curvilinear between environmental costs and the traffic volume of an airport. The results and methodology of environmental cost calculation could be applied to the proposed European wide harmonised noise charges as well as the social cost benefit analysis of airports.  相似文献   

18.
Intercity passenger trips constitute a significant source of energy consumption, greenhouse gas emissions, and criteria pollutant emissions. The most commonly used city-to-city modes in the United States include aircraft, intercity bus, and automobile. This study applies state-of-the-practice models to assess life-cycle fuel consumption and pollutant emissions for intercity trips via aircraft, intercity bus, and automobile. The analyses compare the fuel and emissions impacts of different travel mode scenarios for intercity trips ranging from 200 to 1600 km. Because these modes operate differently with respect to engine technology, fuel type, and vehicle capacity, the modeling techniques and modeling boundaries vary significantly across modes. For aviation systems, much of the energy and emissions are associated with auxiliary equipment activities, infrastructure power supply, and terminal activities, in addition to the vehicle operations between origin/destination. Furthermore, one should not ignore the embodied energy and initial emissions from the manufacturing of the vehicles, and the construction of airports, bus stations, highways and parking lots. Passenger loading factors and travel distances also significantly influence fuel and emissions results on a per-traveler basis. The results show intercity bus is generally the most fuel-efficient mode and produced the lowest per-passenger-trip emissions for the entire range of trip distances examined. Aviation is not a fuel-efficient mode for short trips (<500 km), primarily due to the large energy impacts associated with takeoff and landing, and to some extent from the emissions of ground support equipment associated with any trip distance. However, aviation is more energy efficient and produces less emissions per-passenger-trip than low-occupancy automobiles for trip distances longer than 700–800 km. This study will help inform policy makers and transportation system operators about how differently each intercity system perform across all activities, and provides a basis for future policies designed to encourage mode shifts by range of service. The estimation procedures used in this study can serve as a reference for future analyses of transportation scenarios.  相似文献   

19.
In the real world, planned aircraft maintenance schedules are often affected by incidents. Airlines may thus need to adjust their aircraft maintenance schedules following the incidents that occur during routine operations. In tradition, such aircraft maintenance schedule adjustment has been performed manually, a process which is neither effective nor efficient, especially when the problem scale is large. In this study, an aircraft maintenance schedule adjustment model is developed, with the objective of minimizing the total system cost, subject to the related operating constraints. The model is formulated as a zero-one integer program and is solved using a mathematical programing solver. The effectiveness of the model is evaluated by application to a case study using data from an aircraft maintenance center in Taiwan. The test results show the proposed model, as well as the scheduling rules abstracted from the results are useful for the decision maker to adjust good maintenance schedules.  相似文献   

20.

In this paper a practical technique for finding improved airline routings and schedules is developed. A dynamic programming algorithm is combined with a heuristic method for assigning routes to the aircraft such that the expected total contribution to profit is maximum. Expected passenger demands and priorities are taken to be an input to the model. The model may be used to check the effect on the total system of adding or removing aircraft or of varying aircraft capacity. Although the test runs were made on data for a six city‐ten aircraft array a smaller, more simple numerical example is given to demonstrate the model logic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号