首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黄冈公铁两用长江大桥桥塔上横梁施工技术   总被引:1,自引:0,他引:1  
黄冈公铁两用长江大桥主桥为主跨567 m的斜拉桥.该桥桥塔上横梁为单箱单室预应力混凝土结构,长23.85m、宽8.4m、高8.0m,桥塔采用液压自爬模施工,上横梁与上塔柱采用异步施工.上横梁浇筑支架采用在两塔柱内侧设置剪力槽,安放对拉式钢牛腿作为支架受力支承点的方案.上横梁分2层浇筑,在第2层混凝土浇筑前张拉部分预应力筋.采用MIDAS Civil建模分析上横梁施工过程,结果表明,分层浇筑和分次张拉预应力钢筋可以有效减小现浇支架的荷载,且混凝土应力满足规范要求.该桥桥塔上横梁施工技术切实可行,实现了桥塔快速化施工.  相似文献   

2.
九江长江公路大桥北塔下横梁施工方案研究   总被引:3,自引:0,他引:3  
九江长江公路大桥主桥采用(70+75+84)m+818 m+(233.5+124.5)m双塔不对称混合梁斜拉桥,H形桥塔塔肢间设上、中、下3道横梁.为确定该桥北塔下横梁施工方案,对同步施工方案、异步施工方案、异步施工+主动横撑方案进行分析.结果表明:异步施工+主动横撑方案结构受力合理、施工工期短、施工风险小,确定为下横梁最终施工方案.经优化,主动横撑采用2根Φ1200 mm×12 mm的螺旋焊管制作,每根施加2000 kN 水平推力,在下横梁第一层混凝土强度达到90%之后,施加第一批横向预应力前撤掉水平推力;采取增加塔柱混凝土凿毛厚度、加强局部振捣的方法,保证新老混凝土结合面混凝土的施工质量.  相似文献   

3.
常泰长江大桥主航道桥为主跨1176 m的公铁合建双塔斜拉桥,由于跨度和主梁自重均较大,该桥桥塔具有塔高、体量大、索力大、塔端锚固构造及施工较为复杂的特点.根据桥塔结构特点,开展桥塔方案、索塔锚固方案等一系列研究,创造性地提出采用钢-混混合空间钻石型桥塔(简称SCDT)和钢箱-核芯混凝土组合索塔锚固结构(简称SCAS)....  相似文献   

4.
斜拉桥桥塔采用液压爬模施工时,爬模在横梁位置因与横梁施工冲突而无法正常爬升,影响整体工期控制,以厦漳跨海大桥南塔下横梁施工为例,对塔梁同步施工、异步施工方案进行对比研究.结果表明:塔梁异步施工虽增加钢筋制作成本,但可节约模板制作成本,且利于总体工期、总体成本控制,确定为厦漳跨海大桥南塔下横梁施工方案.实践表明,该桥采用塔梁异步施工工艺可以有效提高工效,保证整体工期,降低成本.  相似文献   

5.
鄂东长江公路大桥桥塔拉杆及支撑系统设计与施工   总被引:3,自引:2,他引:1  
鄂东长江公路大桥为主跨926 m的双塔双索面半漂浮体系混合梁斜拉桥.北桥塔高度达242.5 m,采用"凤翎"式结构,下塔柱外倾,中塔柱内倾,施工过程中为避免桥塔根部混凝土应力过大出现裂缝,在中、下塔柱设置主动拉杆和主动横撑.主要阐述鄂东长江公路大桥北桥塔下塔柱拉杆及中塔柱水平支撑系统的设计与施工.  相似文献   

6.
川南城际铁路临港公铁两用长江大桥主桥为主跨522 m双塔双索面钢箱梁斜拉桥,桥塔为钻石形钢筋混凝土结构,塔高250.8 m,设中、下横梁各1道及上横梁2道。桥塔采用液压爬模施工,其中下塔柱与下横梁采用同步施工;中、上塔柱与中、上横梁及连接板采用异步施工。在中、上塔柱施工时,中、上塔柱间设置6道主动横撑,解决了塔柱、横梁异步施工时内倾塔柱因自由长度过长导致其根部受力较大的问题,避免了开裂;中横梁采用附壁支架施工,设计简洁且耗材少,整体安装快速便捷,承载性能好;连接板采用无水平推力弧形拱架施工,解决了跨度大、承载力要求高的问题;风洞与上横梁采用落地式组合支架施工,既解决了狭小空间内部支撑构件的安拆问题,又满足承载力强、稳定性高、风险小的要求。  相似文献   

7.
武汉二七长江大桥主桥桥塔施工关键技术   总被引:3,自引:2,他引:1  
针对武汉二七长江大桥主桥桥塔施工工期紧、大体积混凝土构件裂缝控制及高空作业难度大、施工风险高等问题,该桥塔柱采用爬模施工,横梁采用满堂支架法施工,上塔柱采取塔梁同步施工技术.塔柱采用改进的液压自爬模系统和大节段模板、分竖向6 m大节段施工;为控制裂缝,下塔柱第1节与塔座混凝土同时灌注,横梁分2层施工,中塔柱合龙段施工时增设水平联结系以锁定两肢中塔柱;采用接力泵、振捣坐标化管理及有针对性的养护措施确保高空混凝土施工及质量;塔梁同步施工阶段,根据塔形变形曲线精确定位索道管,并设置高空防护平台、封闭液压自爬模系统等措施确保施工安全.  相似文献   

8.
粉房湾长江大桥主桥为双塔双索面斜拉桥,桥塔采用宝塔形曲线钢筋混凝土结构.为了解该桥桥塔在各施工阶段的受力状态,采用有限元分析软件MIDAS Civil模拟桥塔施工动态力学过程,分析桥塔的受力随施工过程变化的规律.分析结果表明:该桥桥塔施工过程中临时横向支撑的最大轴力为966 kN,横梁的施工及预应力的张拉对临时横向支撑的受力影响较大;桥塔施工过程最危险的部位为下、中、上塔柱的底部,这3个部位各自在不同的施工阶段达到其拉应力最大值,且下、中塔柱的底部拉应力最大值均较大.  相似文献   

9.
为了减小斜拉桥曲线形钻石桥塔在施工阶段和运营阶段的拉应力,防止混凝土桥塔出现开裂病害,以主跨480m的宜宾盐坪坝长江大桥为例,开展桥塔抗裂设计技术研究。采用MIDAS Civil程序建立全桥空间有限元模型,计算桥塔在施工阶段和成桥运营状态下的内力,研究桥塔竖向预应力、斜拉索横向偏心布置、塔柱临时横撑及对拉、环向预应力等措施对桥塔应力的改善作用,以及桥塔混凝土掺加钢纤维对材料强度的提升效果。结果表明:曲线形钻石桥塔受力复杂,在塔柱受拉区设竖向预应力是有效的抗裂措施;斜拉索适当向曲线外侧横向偏心布置可减小塔柱横向弯矩;临时横撑及对拉既可减小施工期塔柱拉应力,又可改善塔柱成桥状态的应力;环向预应力为塔柱水平方向提供一定压应力储备;桥塔混凝土中掺加少量钢纤维对强度提升作用不大,可减小桥塔表面非受力裂缝。  相似文献   

10.
黄冈公铁两用长江大桥主桥为主跨567 m的钢桁梁斜拉桥,桥塔为H形混凝土结构.该桥桥塔塔柱采用液压爬模施工;下横梁采用落地式支架施工,与下塔柱节段混凝土同步浇筑;中塔柱施工时设置2道临时横撑,以改善塔柱施工阶段的受力;上横梁采用梯形桁架施工,与塔柱混凝土异步施工,上、下横梁混凝土均分2层浇筑.采用MIDAS有限元软件建模对桥塔施工过程进行分析,结果表明:上、下横梁混凝土分层浇筑时混凝土应力满足规范要求,且可有效降低现浇支架荷载;临时横撑的设置保证了施工阶段桥塔应力及位移均满足要求;上横梁梯形桁架支点处塔柱局部应力满足要求.  相似文献   

11.
某(105+180+105) m波形钢腹板-PC组合梁矮塔斜拉桥桥塔采用外倾式分肢双塔柱,外倾15°,外观呈Y形。针对桥塔先塔后梁施工过程中上塔柱塔根内侧拉应力和塔顶横向变形过大的问题,提出先塔后梁增加临时对拉索和塔梁同步施工2种施工优化方案,采用MIDAS Civil软件建立有限元模型,研究各施工优化方案对桥梁结构受力性能的影响,并进行综合比选。结果表明:施工过程中,2种施工优化方案均能将塔根拉应力减小至材料抗拉强度设计值以下,且塔梁同步施工方案塔顶横向变形比先塔后梁施工方案最大减小40.2%;成桥状态时,2种施工优化方案的斜拉索成桥索力值与设计成桥索力值比较接近,且误差均在5%以内,2种施工优化方案对成桥质量控制无不利影响;通过工期、工程造价、工程质量和施工安全方面的比较,经综合考虑,该桥桥塔施工采用塔梁同步施工方案。工程实践证明塔梁同步施工方案实施效果较好。  相似文献   

12.
果子沟大桥为大跨度钢桁梁斜拉桥,桥塔为阶梯形钢筋混凝土结构,塔高分别为209.5 m和215.5 m,共设置4道横梁,构造复杂,塔柱与横梁异步施工难度大。为确保施工过程安全、合理,采用空间有限元法模拟桥塔施工阶段,计算分析塔柱的应力和位移。结果表明:塔柱各施工阶段预偏量设置合理;斜塔柱施工过程中2道临时横撑及在梁端加顶力减小了斜塔柱根部混凝土开裂的可能,保证塔柱与横梁异步施工过程中整体斜塔柱的线形、应力和稳定性满足设计与施工要求。  相似文献   

13.
介绍了武汉二七长江大桥桥塔设计,其主桥为2×616m三塔斜拉桥.设计采用在结构受力、经济和美观等方面均较佳的花瓶形桥塔.三塔外观造型一致且等高,均为206m,钢筋混凝土结构.根据总体受力的要求,中、边塔刚度不同,具体表现在顺桥向截面尺寸的差别较大.主塔结构:主塔塔柱根据位置的不同分别采用单箱单室至单箱双室截面;横梁和索锚区采用预应力混凝土结构,中塔下横梁顶面布置有支座垫石及纵向约束装置,边塔下横梁顶面则布置有支座垫石及有抗震作用的纵向液压阻尼装置.为确保主塔受力安全,按照施工步骤对主塔进行了整体计算和索锚区局部应力分析.经过检算,主塔均满足规范要求,并有一定的安全储备.  相似文献   

14.
常泰长江大桥主航道桥为(142+490+1 176+490+142) m公铁两用双层桥面斜拉桥,下层桥面采用上游侧布置两线城际铁路、下游侧布置4车道一级公路的非对称布置,造成大桥横桥向恒载非对称。为研究该桥桥塔在横桥向非对称恒载下的横向偏位以及控制方法,采用MIDAS Civil软件建立主桥桁架有限元模型,分析了不对称恒载对桥塔的作用模式、桥塔横向偏位成因,研究增设体外预应力索和塔上锚点偏移2种桥塔横向偏位控制方案的可行性。结果表明:上塔柱可简化成悬臂梁受力模式,桥塔横向偏位主要受空间斜拉索的横桥向分力和竖向分力控制,横桥向分力起主要控制作用;增设体外预应力索可有效控制桥塔的横向偏位,可操作性强;通过偏移锚点能够改善桥塔的横向偏位情况,但需要综合考虑主梁和桥塔的线形和内力,且可移动的距离受限,综合考虑该桥最终采用设置体外预应力索方案。  相似文献   

15.
孙秀贵  胡建华  李瑜  王甜  黄国平 《公路》2023,(3):130-136
邵阳雪峰大桥设计为主跨2×120 m独塔斜拉桥结构,桥塔采用独创的翼形混凝土结构设计,由4根塔柱组成,立面为飞翼造型,侧面为A形,塔柱间由水平索连接形成稳定结构。翼形桥塔为空间受力结构,设计过程中,采用三向预应力、交叉交错锚固、下横梁后浇反顶等技术,解决了混凝土桥塔的复杂受力问题;施工过程中,提出了“无支架多功能平台施工”技术,解决了翼形桥塔的施工难题。  相似文献   

16.
粉房湾长江大桥为双塔双索面半飘浮体系公轨两用钢桁梁斜拉桥,其桥塔为钢筋混凝土结构,曲线宝塔形,全高188.3 m(承台除外),中间设置3道横梁,上塔柱为锚固段,全段设有井字形预应力束.为解决施工精度要求高、工期紧的难题,通过空间三维精确测量定位,在每节塔柱测量放样时向外预偏2 cm,同时在一定位置对桥塔施加水平预顶力;塔柱施工采用液压爬模技术,模板以直代曲;横梁施工采用装配式钢管支架系统,与桥塔异步施工.目前南、北桥塔已经封顶,经测量塔柱线形偏差仅为6 mm.  相似文献   

17.
桥塔下横梁支架在施工过程中受力情况复杂,需承受分层浇筑的混凝土自重,分批张拉的预应力荷载,同时还应考虑下横梁支架与已浇筑的下横梁下层截面的协同受力问题.该文以宜昌伍家岗长江大桥为例,对桥塔下横梁支架进行了设计,采用实体有限元软件分析了整个施工过程中下横梁支架的受力变化,并结合传感器实测数据进行对比分析,提出了下横梁支架...  相似文献   

18.
为了提高双向倾斜桥塔在施工过程中的稳定性和安全性,需要合理设计横撑作为临时结构,并对其进行施工控制.以某斜塔空间扭索双索面斜拉桥方案为背景,在对全桥模型进行复核和施工阶段计算后,提出横撑设置方案;对主动横撑施工过程进行监控,并对施工误差进行分析,对拆除横撑的施工控制方法及横撑拆除时机进行研究.得出如下结论:在主动横撑设计时应主要控制中塔柱根部混凝土截面应力,以内力控制为主、变形控制为辅的原则确定主动横撑预顶力;主动横撑的预顶力值确定应该包括模型受力计算值、温度影响值以及焊接变形所产生的内力变化值;施工过程中需要提高塔柱施工、横撑焊接的质量,并合理安排横撑的拆除时机.  相似文献   

19.
黄冈公铁两用长江大桥桥塔为H形钢筋混凝土结构,塔高190.5m,采用液压爬模法施工。为满足液压爬模在高塔施工过程中快速化施工的需求并确保施工安全,针对桥塔结构特点,选用将5m节段液压爬模改进成6m的节段液压爬模进行桥塔施工,并对液压爬模结构进行优化改进,包括整体制作大装饰槽和大倒角模板并固定在液压爬模上,在大装饰槽处附墙装置下增加牛腿,将塔柱内、外侧面液压爬模上支架后移平台加长50cm。通过合理布置桥塔液压爬模轨迹,桥塔液压爬模只在中下塔柱转角处进行1次转换,避免了液压爬模在高空中多次转换的风险;液压爬模采用分组整体转换,加快了桥塔施工速度。实践证明,该桥采用液压爬模施工技术,实现了高效快速化施工目标,且施工过程安全。  相似文献   

20.
安庆长江大桥索塔中塔柱施工技术   总被引:1,自引:0,他引:1  
文中介绍了安庆长江大桥斜拉索塔中塔柱施工方案、施工要点,较为详细地说明了中塔柱横撑的布置、设计及结构的确定,实测资料表明整个索塔施工过程中中塔柱根部应力未超过设计容许值,可为今后同类斜拉桥索塔塔柱施工提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号