首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
URANS analysis of a broaching event in irregular quartering seas   总被引:1,自引:0,他引:1  
Ship motions in a high sea state can have adverse effects on controllability, cause loss of stability, and ultimately compromise the survivability of the ship. In a broaching event, the ship losses control, naturally turning broadside to the waves, causing a dangerous situation and possibly capsizing. Classical approaches to study broaching rely on costly experimental programs and/or time-domain potential or system-based simulation codes. In this paper the ability of Reynolds averaged Navier–Stokes (RANS) to simulate a broaching event in irregular waves is demonstrated, and the extensive information available is used to analyze the broaching process. The demonstration nature of this paper is stressed, as opposed to a validated study. Unsteady RANS (URANS) provides a model based on first principles to capture phenomena such as coupling between sway, yaw, and roll, roll damping, effects of complex waves on righting arm, rudders partially out of the water, etc. The computational fluid dynamics (CFD) method uses a single-phase level-set approach to model the free surface, and dynamic overset grids to resolve large-amplitude motions. Before evaluating irregular seas two regular wave cases are demonstrated, one causing broaching and one causing stable surf riding. A sea state 8 is imposed following an irregular Bretschneider spectrum, and an autopilot was implemented to control heading and speed with two different gains for the heading controller. It is concluded that the autopilot causes the ship to be in an adverse dynamic condition at the beginning of the broaching process, and thus is partially responsible for the occurrence of the broaching event.  相似文献   

2.
於健 《中国航海》2006,(1):46-48
船舶在波浪中航行,纯稳性丧失、参数激振和横甩是造成船舶倾覆的主要原因。针对波长与船长、波高与波长、波与船的波舷角三者对船舶稳性的影响进行讨论,揭示了船舶在波浪中航行时的稳性变化规律,提出了应合理地选择船舶的航行姿态、谨慎用舵等操船建议,保证船舶的航行安全。  相似文献   

3.
顾民  储纪龙  韩阳  鲁江 《船舶力学》2018,22(3):287-295
目前国际海事组织(IMO)正在制定的第二代完整稳性衡准,其中就包括骑浪/横甩薄弱性衡准。文章首先介绍了最新骑浪/横甩薄弱性衡准方法,应用自编的衡准软件进行样船计算,分析了当前衡准的适用性。其次,开展了内倾船型在随浪和尾斜浪中的骑浪/横甩试验,试验中获得了四种与骑浪/横甩相关的运动特性:周期运动、稳定骑浪、横甩和横甩导致的倾覆,而且在某波浪条件下观察到船舶连续发生三次横甩的现象。最后,将内倾船型的骑浪/横甩薄弱性衡准计算结果与试验结果进行对比,验证了衡准方法对于内倾船型的适用性。  相似文献   

4.
[Objective]To investigate ship motion and load responses in realistic 3D waves and overcome the limitations of the traditional 2D wave assumption, this paper develops a method for predicting ship motion and load responses in short-crested waves. [Method]The long- and short-term responses of ship motion and load in long- and short-crested waves are numerically predicted using the spectral analysis and statistical probability methods, respectively. The influence of directional function on ship response is also numerically analyzed. Moreover, tank model tests and a large-scale model sea trial are comparatively conducted to validate the difference between ship response and statistics in long- and short-crested irregular waves. [Results]The results show that when navigating against the waves in the same sea condition, the long-crested wave assumption overestimates the statistical mean value of ship load response, but underestimates extreme load in real seas. For long-crested waves, the ship motion and acceleration power spectrum is concentrated around a certain frequency band. [Conclusion]Ship motion and load responses in realistic 3D waves are significantly different from those in 2D long-crested waves. The directional function of short-crested waves also has a significant effect on ship motion and load responses. © 2023 The Author(s).  相似文献   

5.
This study targets to develop a computational procedure to predict the structural response of a ship voyaging through irregular seaways taking into account the relevant uncertainties from probability perspective. To achieve the goal, ship structural response under random wave excitation was assumed to be linear one and represented by linear Volterra series, which is expanded by linear combination of Laguerre polynomials. Then the unknown Laguerre coefficients were treated as random variables, the probability of which was sought by solving Bayesian linear regression model using prepared data sets. For the validation of the proposed methodology, a single DOF linear oscillator model with artificial damping uncertainties was introduced and time series of the system response was predicted probabilistically. For more practical and realistic application, 400,000 DWT VLOC model ship experimental data was analyzed and vertical bending moment time series were probabilistically predicted using the proposed method. On top of probabilistic time series prediction of model ship, the fatigue damage was also estimated based on the stochastic time series obtained using predicted probabilistic time series data.  相似文献   

6.
A systematic method for assessing intact ship stability with a free-running model in a seakeeping and maneuvering basin is proposed in this paper. Model experiments were carried out in extremely steep regular waves for a model drifting, running in head seas, and quartering seas. This method was applied to two purse seiners, and efficiently identified thresholds in metacentric heights for capsizing of these ships. These capsizing thresholds are compared with requirements of the IMO Code on Intact Stability. This series of model experiments also confirms that capsizing at the threshold occurs only in quartering seas, and shows that capsizing is caused by broaching, loss of stability on a wave crest, or bow diving. Received for publication on Jan. 20, 1999; accepted on July 6, 1999  相似文献   

7.
The present study focuses on the nonlinear behavior of pressure on the hull surface of a high-speed vessel in irregular waves, particularly the pressure responses of alternately wet and dry areas near the waterline and on the bow zone. The vessel has high deadrise angles that may be subject to slight impact and water pile-up effects. A series of experiments in regular and irregular head waves were conducted, and the validity of applying Volterra modeling was investigated. In a previous article using experimental data in regular waves, it was confirmed that the approximate third-order Volterra model adequately simulated the variation of pressure responses in regular waves of different steepness up to a wave amplitude with a wavelength ratio of 0.01, even for the highly nonlinear pressures acting on the abovementioned areas of the hull surface. In this article, further validation for the second part of the study was obtained using experimental data in irregular waves. The frequency response functions obtained from the previous study’s experimental data in regular waves were applied to the third-order Volterra model by combining the input of irregular waves to simulate the responses in irregular waves of sea state five. Then, the spectra and statistics were analyzed. For the motions, accelerations, and pressure responses in irregular waves (as well as for the simulated time histories) variance spectra and statistics such as cumulative distributions of peak values and probability density functions were compared with the experimental results. It was confirmed that even for highly nonlinear and non-Gaussian pressures on the abovementioned areas of the hull surface, the approximate third-order Volterra model simulates the pressure responses in irregular head waves up to a sea state of five with adequate accuracy on deterministic and statistical bases.  相似文献   

8.
王艳霞  王杉  陈京普 《船舶力学》2016,20(3):258-264
失速系数( fw)是EEDI公式的计算参数之一。文章研究了典型海况下不同的波浪增阻计算方法对船舶航速以及fw的影响。文中主要基于三种波浪增阻理论计算模型,以肥大型船为研究对象,计算分析典型海况蒲氏六级下的波浪增阻系数的分布规律以及相同收到功率下的航速和fw。结果表明:三个理论模型计算得到的fw均低于模型试验结果;Model-3高估了不规则波中的波浪增阻值;Model-1和Model-2计算得到的fw与模型试验结果较接近。  相似文献   

9.
Freakish sea index and sea states during ship accidents   总被引:1,自引:0,他引:1  
Sea states during seven marine accidents near Japan reported in the media were analyzed using a third-generation wave model. Based on the estimated evolution of the directional wave spectrum, a narrowing of the directional spectrum was suggested for five cases. Based on earlier studies in laboratory tanks, the narrowing of the directional spectrum may be associated with increased probability of freak waves at the time of the accident. A diagram mapping the frequency bandwidth and directional spread proved useful as a diagnostic tool. This freakish sea index was compared against recently conducted ocean wave observations. The accident causes are discussed in the context of slamming, green sea loading, loss of stability, broaching and other possibilities.  相似文献   

10.
It is very important to estimate the waves generated by a small vessel so as to investigate their effects on floating bodies within the scope of fisheries and ocean engineering. Simplified methods for estimating the wave heights and periods of ship waves have been presented in previous studies. However, estimating the direction of ship waves is not easy. The focus of the present study is to develop an analytical technique to determine the direction of ship waves based on the measurements in field experiments. The multiple signal classification (MUSIC) method is newly proposed for determining the direction of ship waves. For high ship speeds, the directional spectrum of ship waves estimated by MUSIC resulted in a sharp monotone peak, and the estimated directions of ship waves were very similar to the results of field experiments using an actual small vessel. The proposed MUSIC method has thus been confirmed to be effective in estimating ship wave directions with high resolution.  相似文献   

11.
The authors have already examined a method for evaluating the capsizing probability of a ship in the dead ship condition based on a piecewise linear approximation of the restoring arm. Here, this method is extended to ships with trapped water on deck. This is because the stability of ships having a relatively high bulwark, such as fishing vessels, could substantially deteriorate due to trapped water on deck. First, the mean amount of water trapped on deck was estimated as a function of the significant wave height and the mean wave period using a model experiment in irregular beam seas. Second, the restoring arm curve with trapped water on deck was calculated hydrostatically and then approximated with a piecewise linear curve. Third, the roll angle was estimated using a nonlinear and uncoupled equation of absolute roll angle under stochastic wave and wind exciting moments. The short-term and long-term capsizing probabilities were calculated for a fishing vessel operating off Kyushu. Numerical results quantitatively demonstrated that the effect on capsizing probability of trapped water on deck cannot be ignored when accurately evaluating the stability of fishing vessels.  相似文献   

12.
本文介绍船模倾覆试验的结果及其数值模拟。试验表明,在横浪情况下船舶因装载造成的横倾角,会大大增加倾覆的危险性。对这一结论进行的数值模拟与实测结果符合良好。  相似文献   

13.
An efficient method for calculation of the slamming pressures on ship hulls in irregular waves is presented and validated for a 290-m cruise ship. Nonlinear strip theory was used to calculate the ship–wave relative motions. The relative vertical and roll velocities for a slamming event were input to the slamming calculation program, which used a two-dimensional boundary element method (BEM) based on the generalized 2D Wagner formulation presented by Zhao et al. To improve the calculation efficiency, the method was divided into two separate steps. In the first step, the velocity potentials were calculated for unit relative velocities between the section and the water. In the next step, these precalculated velocity potentials were used together with the real relative velocities experienced in a seaway to calculate the slamming pressure and total slamming force on the section. This saved considerable computer time for slamming calculations in irregular waves, without significant loss of accuracy. The calculated slamming pressures on the bow flare of the cruise ship agreed quite well with the measured values, at least for time windows in which the calculated and experimental ship motions agreed well. A simplified method for calculation of the instantaneous peak pressure on each ship section in irregular waves is also presented. The method was used to identify slamming events to be analyzed with the more refined 2D BEM method, but comparisons with measured values indicate that the method may also be used for a quick quantitative assessment of the maximum slamming pressures.  相似文献   

14.
To provide a theoretical methodology to predict the critical condition for capsizing due to broaching, a nonlinear dynamical system approach was applied to the surge–sway–yaw–roll motion of a ship running with an autopilot in following and quartering seas. Fixed points of a mathematical model for the ship motion and unstable manifolds of the fixed point near the wave crest were systematically investigated. As a result, the existence of heteroclinic bifurcation was identified. With numerical experiments, it was confirmed that this heteroclinic bifurcation reasonably well represents the critical condition for capsizing due to broaching. Thus the nonlinear dynamical approach can be substituted for tedious numerical experiments. Received for publication on Nov. 20, 1998; accepted on March 16, 1999  相似文献   

15.
船舶的波激振动和砰击振动对船舶结构的安全性有较大影响。文章以一艘超大型 VLCC 为研究对象,通过变截面梁分段模型试验方法对船舶在规则波和不规则波中波激振动和砰击振动响应进行了比较分析,介绍了船模波浪载荷试验中模型的设计原则,通过静水试验得到了船体梁垂向振动频率特性、振动阻尼和静水兴波弯矩等参数,通过规则波和不规则波试验分析了波高、波浪周期和装载状态等因素对波激振动和砰击振动的影响。该文的研究结果对大型船舶的结构设计具有一定的指导意义。  相似文献   

16.
It is well known that the hydrodynamic responses of a high-speed vessel traveling in regular head waves of even moderate wave height can show significant nonlinear behavior, and so linear statistical techniques become insufficient for predicting the statistics of responses in irregular waves. On the other hand, it has been shown that an approximate third-order Volterra model is applicable to handling the statistics of some nonlinear seakeeping problems, such as motions and vertical hull girder loads. In the present study, the focus is on the nonlinear behavior of the pressure responses of the hull surface, especially on the pressures acting on alternately wet and dry areas near the waterline and on the bow zone with high deadrise angles that may be subject to slight impact and water pile-up effects. To clarify the validity of applying Volterra modeling to this problem, a series of experiments in regular and irregular head waves were carried out, and approximate third-order and fifth-order Volterra models with the proposed algorithm for finding frequency response functions (FRFs) were applied as a means of validation. In the present article, the first part of the validation was performed using experimental data in regular waves. It was confirmed that the third-order Volterra model has adequate accuracy to simulate deterministically the variation of pressure responses in regular waves of different wave steepness up to a wave amplitude to wavelength ratio of 0.01 even for the highly nonlinear pressures acting on the above-mentioned areas of the hull surface.  相似文献   

17.
为讨论船舶在波浪中的非线性横摇,应用非线性动力学的方法对现象进行理论分析,得到主共振情况下船舶运动稳态响应的解析解,并对实船进行稳定性分析。通过不同波浪条件下船舶非线性横摇运动的模拟计算,预报船舶在横浪中的横摇运动,预报结果与试验结果比较一致。  相似文献   

18.
本文就日本S-175集装箱船舶的波浪载荷进行了船模试验与线性切片理论计算的比较,发现线性切片理论对于波浪载荷沿船长的纵向分布以及中拱与中垂的不同分量都与试验值存在着相当大的差异,仅纵向运动较为满意;揭示了对于在高浪级下快速舰船的波浪载荷,特别是砰击载荷应致力于开展非线性理论和试验研究。  相似文献   

19.
数值波浪水池及顶浪中船舶水动力计算   总被引:6,自引:3,他引:6  
吴乘胜  朱德祥  顾民 《船舶力学》2008,12(2):168-179
基于粘流理论建立了三维数值波浪水池,模拟了非线性波浪,并对规则波顶浪中前进的拘束船模的水动力进行了计算.数值模拟中,控制方程-RANS方程和连续性方程使用有限体积法离散,非线性自由面采用VOF方法处理;在入口边界模拟柔性造波板运动产生入射波,使用位于波浪水池尾部的人工阻尼区消波.给出了非线性规则波的模拟结果以及规则波顶浪中前进的拘束船模的水动力计算结果,并与理论解及DUT(Delfi University of Technology)的试验数据进行了比较,二者吻合良好.  相似文献   

20.
The behavior of a ship in regular waves during maneuvering was studied by using a two-time scale model. The maneuvering analysis was based on Söding’s (Schiffstechnik 1982; 29:3–29) nonlinear slender-body theory generalized to account for heel. Forces and moments due to rudder, propeller, and viscous cross-flow follow from the state-of-the-art procedures. The developed unified theory of seakeeping and maneuvering was verified and validated for calm water by comparing it with experimental and calculated zigzag and circle maneuvers. Linear wave-induced motions and loads were determined by generalizing the Salvesen-Tuck-Faltinsen (Trans SNAME 1970; 78:250–287) strip theory. The mean second-order wave loads in incident regular deep water waves in oblique sea conditions were estimated by the potential flow theories of Faltinsen et al. (Proc 13th Symp Naval Hydrody 1980), Salvesen (Proc Intl Symp Dynam Mar Vehicl Struct Wave 1974), and Loukakis and Sclavounos (J Ship Res 1978; 22:1–19). The considered theories cover the whole range of important wavelengths. Comparisons between the different mean second-order wave load theories and available experimental data were carried out for different ship hull forms when the ship was advancing forward on a straight course. The mentioned methods have been incorporated into the maneuvering model. Their applicability from the perspective of the maneuvering ability of the selected types of ships was investigated in given wave environments. The wave conditions are valid for realistic maneuvering cases in open coastal areas. It was demonstrated that the incident waves may have an important influence on the maneuvering behavior of a ship. The added resistance, mean second-order transverse force, and yaw moment also play important roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号