首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A bond graph model of a mountain bike and rider is created to develop baseline predictions for the performance of mountain bikes during large excursion maneuvers such as drops, jumps, crashes and rough terrain riding. The model assumes planar dynamics, a hard-tail (front suspension only) bicycle and a rider fixed to the bicycle. An algorithm is developed to allow tracking of a virtual tire-ground contact point for events that separate the wheels from the ground. This model would be most applicable to novice mountain bikers who maintain a nearly rigid relationship between their body and the bicycle as opposed to experienced riders who are versed in controlling the bicycle independent of the body. Simulations of a steep drop are performed for various initial conditions to qualitatively validate the predictions of the model. Results from this model are to be compared to experimental data and more complex models in later research, particularly models including a separate rider. The overarching goals of the research are to examine and understand the dynamics and control of interactions between a cyclist and mountain bike. Specific goals are to understand the improvement in performance afforded by an experienced rider, to hypothesize human control algorithms that allow riders to perform manoeuvres well and safely, to predict structural bike and body forces from these maneuvers and to quantify performance differences between hard-tail and full suspension bicycles.  相似文献   

2.
A bond graph model of a mountain bike and rider is created to develop baseline predictions for the performance of mountain bikes during large excursion maneuvers such as drops, jumps, crashes and rough terrain riding. The model assumes planar dynamics, a hard-tail (front suspension only) bicycle and a rider fixed to the bicycle. An algorithm is developed to allow tracking of a virtual tire-ground contact point for events that separate the wheels from the ground. This model would be most applicable to novice mountain bikers who maintain a nearly rigid relationship between their body and the bicycle as opposed to experienced riders who are versed in controlling the bicycle independent of the body. Simulations of a steep drop are performed for various initial conditions to qualitatively validate the predictions of the model. Results from this model are to be compared to experimental data and more complex models in later research, particularly models including a separate rider. The overarching goals of the research are to examine and understand the dynamics and control of interactions between a cyclist and mountain bike. Specific goals are to understand the improvement in performance afforded by an experienced rider, to hypothesize human control algorithms that allow riders to perform manoeuvres well and safely, to predict structural bike and body forces from these maneuvers and to quantify performance differences between hard-tail and full suspension bicycles.  相似文献   

3.
This study proposes a bicycle-rider control model based on model predictive control (MPC). First, a bicycle-rider model with leaning motion of the rider’s upper body is developed. The initial simulation data of the bicycle rider are then used to identify the linear model of the system in state-space form for MPC design. Control characteristics of the proposed controller are assessed by simulating the roll-angle tracking control. In this riding task, the MPC uses steering and leaning torques as the control inputs to control the bicycle along a reference roll angle. The simulation results in different cases have demonstrated the applicability and performance of the MPC for bicycle-rider modelling.  相似文献   

4.
This paper presents the results of an optimization analysis performed on off-road bicycles in which the energy loss induced as a result of pedaling action was minimized. A previously developed computer-based dynamic system model (Wang and Hull, Vehicle System Dynamics, 25:3, 1996) was used to evaluate the power dissipated by a single pivot point rear suspension while pedalling uphill on a smooth surface. By systematically varying the location of the pivot point, the relationship between power dissipated and pivot location was determined. The optimal location was defined as the location which resulted in the least power dissipated. The simulation results show that the power dissipated was very dependent on the height above the bottom bracket but not the fore-aft location of the pivot point. If the pivot point is constrained to the seat tube, then the optimal pivot point was found to be 11 cm above the bottom bracket. Compared to a commercially available design, the optimal pivot point reduced the power dissipated from 6.9 to 1.2 Watts. Furthermore, the optimal pivot point was found to be very insensitive to pedaling mechanics, and both the spring and damping parameter values. The optimal pivot point did, however, have a linear dependence on the height of the chainline; as the chainline height increased so too did the optimal pivot point height.  相似文献   

5.
本文以ANSYS软件为工具,对某型号越野汽车驾驶室后悬置支架进行受力分析,详细准确地确定了汽车驾驶室后悬置支架的受力情况和应力分布部位,依托分析结果对支架结构进行优化,达到降低驾驶室后悬置支架关键部位应力的目的,并通过实际试验进行验证,结果显示优化后的支架有效地改善了关键部位的应力,解决了支架断裂问题,提高了整个驾驶室悬置系统的可靠性能。  相似文献   

6.
以某大客车为研究对象,分别拟合前后悬架空气弹簧刚度,在Matlab中建立八自由度整车模型,并进行平顺性仿真与实验,将其仿真结果与试验结果进行比较,结果显示,所建立的动力学模型及仿真结果是正确的。  相似文献   

7.
馈能型悬架的仿真与性能评价研究   总被引:4,自引:1,他引:3  
陈士安  何仁  陆森林 《汽车工程》2006,28(2):167-171
为了回收悬架间被减振器消耗掉的振动能量,提出了一种集馈能与减振功能于一体的馈能型悬架。还研究了馈能型悬架的工作原理及其动力学模型,并对它进行了数值仿真。同时,利用熵值法建立一个悬架综合性能评价体系,对馈能型悬架和被动悬架的综合性能进行了对比评价,评价结果显示馈能型悬架的综合性能明显优于被动悬架的综合性能,说明使用馈能型悬架来提高汽车的行驶平顺性和燃油经济性在理论上是可行的。  相似文献   

8.
For off-road vehicles, minimizing the absorbed power is the main objective of suspension control. The primary cause of increase in the absorbed power in off-road vehicles driven at high speeds on harsh courses is the exhaustion of the suspension travel. Fuzzy-logic approach to active and semi-active off-road vehicle suspension control, with the goal of improving the speed of the vehicle over rough terrains are developed. The ride metric used for quantifying improvements is the absorbed power of the sprung mass. Particular attention is paid to the proper modeling of the suspension using both the full kinematic constraints and the more convenient two degree of freedom linear model of the quarter vehicle suspension. The nonlinearities due to the kinematic constraints on motion are accounted for by modifying the stiffness and damping coefficients of the suspension spring and dashpot in the linear model. The control laws are developed using the less complex model and demonstrated in the fully constrained environment. Nonlinearities of the suspension, including tire stiffness/damping and bumpstops are included at all stages of controller development.  相似文献   

9.
For off-road vehicles, minimizing the absorbed power is the main objective of suspension control. The primary cause of increase in the absorbed power in off-road vehicles driven at high speeds on harsh courses is the exhaustion of the suspension travel. Fuzzy-logic approach to active and semi-active off-road vehicle suspension control, with the goal of improving the speed of the vehicle over rough terrains are developed. The ride metric used for quantifying improvements is the absorbed power of the sprung mass. Particular attention is paid to the proper modeling of the suspension using both the full kinematic constraints and the more convenient two degree of freedom linear model of the quarter vehicle suspension. The nonlinearities due to the kinematic constraints on motion are accounted for by modifying the stiffness and damping coefficients of the suspension spring and dashpot in the linear model. The control laws are developed using the less complex model and demonstrated in the fully constrained environment. Nonlinearities of the suspension, including tire stiffness/damping and bumpstops are included at all stages of controller development.  相似文献   

10.
应用ADAMS/Car软件,建立包括前后悬架、转向系、车身等在内的某车型的多体动力学模型;利用编制的路面谱文件,进行汽车脉冲和随机路面输入的平顺性仿真分析.将仿真后的测量数据输入到编制的平顺性评价程序中.根据国标对分析结果进行评价。  相似文献   

11.
对Mazda6轿车底盘系统结构特点进行了介绍。其前悬架系统采用A型高支点双横臂独立悬架,不同于传统机构之处在于其下控制臂为双铰点结构;后悬架采用独特的E型多连杆结构;后副车架在不增加质量的前提下提高了刚度与强度;采用的侵入最小的制动踏板机构系统能有效地减缓对驾驶员身体下部的冲击力;所装备的与行驶稳定性有关的控制系统能有效地提高整车性能。  相似文献   

12.
A Multibody Model for the Simulation of Bicycle Suspension Systems   总被引:2,自引:0,他引:2  
The paper describes a two-dimensional mathematical model for the motion of a bicycle-rider system with wheel suspensions. It focusses on the prediction of vibrational stress on the rider due to uneven track. The model was evaluated by comparing its predictions with measuring data concerning weighted accelerations on the human body, depending on various bicycle designs and road surfaces. For the intended purpose the predictions for vibrational stress and vibrational behaviour are sufficiently precise, and the model turns out to be adequate for designing and developing bicycle suspensions.  相似文献   

13.
This paper presents a nonlinear model accurately describing, both qualitatively and quantitatively, the onset and dynamics of bicycle shimmy. Methods of nonlinear dynamics, such as numerical continuation and bifurcation analysis, show that the model exhibits two stable periodic motions found experimentally in on-road tests: the weave and wobble (or shimmy) mode. The modelling results are compared with experimental data collected by riding a racing bicycle downhill at high speeds with hands on the handlebar. The model predicts with surprising accuracy the amplitudes and frequencies of the oscillations, the longitudinal velocity at which they occur, as well as the substantial independence of wobble frequency and amplitude from the forward speed. The lateral acceleration of the upper tube of the frame near the steering axis reaches 5–10?g, both in the model and in the data. The analysis shows that wobble onset and amplitude is particularly sensitive to changes in the torsional stiffness of the frame and strongly depends on tyre lateral force and aligning torque at the wheel–road contact point. It also allows to quantify the additional viscous rotary damping that should be added to the steering assembly to prevent wobble.  相似文献   

14.
ABSTRACT

Measuring the roll angle of single-track vehicles has always been a challenging task; however, accurate and reliable measurements of this magnitude are paramount for controlling the stability of these vehicles, both for autonomous riding and for safety reasons. A roll angle estimation is also useful in other situations, such as tests to perform the identification of the parameters of the rider control. In this work, a new algorithm is presented for estimating the roll angle of bicycles. This estimator, based on the well-known Kalman filter, employs a wheel speed sensor to approximate the speed of the vehicle, and three angular rate sensors, which are currently small and affordable sensors. The proposed method was implemented in a microcontroller and tested in a bicycle and the results were compared with measurements obtained with optical sensors, showing a good correlation. Although it has not been tested in motorcycles, comparable results are expected.  相似文献   

15.
基于正交试验的虚拟样车平顺性分析及参数选择   总被引:4,自引:1,他引:3  
利用多体力学理论,在机械系统动力学分析软件ADAMS中建立了某车的整车多体力学模型。将虚拟样车在三维空间道路上进行平顺性仿真试验,通过正交试验方法研究了前、后悬架弹簧刚度及相关主要衬套等性能参数对汽车行驶平顺性的影响,并根据正交试验的结果优选了相应的设计参数。  相似文献   

16.
通过建立1/4车辆模型,应用最优控制理论进行了车辆主动悬架的LQG(Linear Quadratic Gaussian)控制器的设计,并在Matlab/Simulink环境中建立系统模型并进行仿真,将仿真结果与被动悬架仿真结果进行对比分析。仿真结果表明,具有LQG控制器的主动悬架对车辆行驶平顺性和乘坐舒适性的改善有良好的效果。  相似文献   

17.
为分析扭转梁C特性对稳态转向性能的影响,文章以模态综合法建立了某乘用车扭转梁后悬柔性模型,对建立的原型车进行侧向力C特性仿真,与对标车进行对比发现仿真与试验值存大较大差异,且侧向力前束特性存在较大的过度转向趋势.通过优化安装衬套的刚度使得原型车与试验结果吻合,最后对整车进行稳态回转仿真发现,负的前束侧向力特性不利于转向,优化后的模型提高了整车不足转向.  相似文献   

18.
长期在不良工况的道路上驾驶会降低驾驶员的乘坐舒适性。随着人们对乘坐舒适性需求不断提升,空气弹簧的优势尤为明显。文章提出了一种基于LQR控制策略的自适应空气悬架系统的创新设计方案,提出的LQR控制器采用粒子群算法进行优化。以客车空气悬架为研究对象,采用MATLAB软件对空气悬架系统的被动和自适应动力学模型进行了设计和仿真。仿真结果表明,自适应空气悬架系统在保证车辆稳定性的同时,降低了车辆在随机道路上的最大位移幅值,从而提高了车辆的平顺性。  相似文献   

19.
Passive suspensions are designed to dissipate the energy otherwise transferred to a vehicle's body through interactions with a roadway or terrain. A bond graph representation of an independent suspension design was developed to study the energy flow through a vehicle. The bond graph model was tuned and validated through experimental tests and was found to produce suitable results. Examining the bond graph reveals that the dissipated energy associated with vertical and transverse coordinates generally originates from the longitudinal motion of the vehicle and is transferred through the tire-ground contact patch. Additionally, since the longitudinal energy originates from the vehicle's engine, the energy dissipated via the suspension shock absorber as well as other components (e.g., mechanical joints, etc.) essentially dissipate some engine energy. The plots presented in the paper support this theory by showing that upon traveling a rough terrain, the vehicle's longitudinal velocity drops more when vertical vibrations increase. Results show that a vehicle equipped with a passive suspension experiences a larger velocity drop compared to one with an active suspension traversing the same rough terrain. The paper compares the results of simulation of an analytical bond graph model of an active suspension system with experimental results and finds good agreement between the two. Other simulations show that relative to passive suspensions, not only do active suspensions yield substantial improvement in ride quality, they can also result in substantial energy savings. This paper concludes that if electromechanical actuators are supplemented by passive springs to support the vehicle static weight, the amount of energy required for operation of actuators is significantly less than the amount dissipated by conventional shock absorbers.  相似文献   

20.
Passive suspensions are designed to dissipate the energy otherwise transferred to a vehicle's body through interactions with a roadway or terrain. A bond graph representation of an independent suspension design was developed to study the energy flow through a vehicle. The bond graph model was tuned and validated through experimental tests and was found to produce suitable results. Examining the bond graph reveals that the dissipated energy associated with vertical and transverse coordinates generally originates from the longitudinal motion of the vehicle and is transferred through the tire-ground contact patch. Additionally, since the longitudinal energy originates from the vehicle's engine, the energy dissipated via the suspension shock absorber as well as other components (e.g., mechanical joints, etc.) essentially dissipate some engine energy. The plots presented in the paper support this theory by showing that upon traveling a rough terrain, the vehicle's longitudinal velocity drops more when vertical vibrations increase. Results show that a vehicle equipped with a passive suspension experiences a larger velocity drop compared to one with an active suspension traversing the same rough terrain. The paper compares the results of simulation of an analytical bond graph model of an active suspension system with experimental results and finds good agreement between the two. Other simulations show that relative to passive suspensions, not only do active suspensions yield substantial improvement in ride quality, they can also result in substantial energy savings. This paper concludes that if electromechanical actuators are supplemented by passive springs to support the vehicle static weight, the amount of energy required for operation of actuators is significantly less than the amount dissipated by conventional shock absorbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号