首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
地铁车辆制动时产生的废热影响车辆运行品质与乘车环境。设计了具有储能、释能、能量保持3种工作模式的飞轮储能装置,将制动能量加以回收与利用。通过对储能装置的结构特点及车辆限界进行分析,确定以"高转速、小尺寸、大功率"的原则,设计了适合于地铁车辆的飞轮储能装置方案,对飞轮储能装置3种工作模式的程序控制进行了设计。建立了仿真模型,对系统的储能与释能这2种工作模式进行了仿真与分析。  相似文献   

2.
随着超级电容、锂离子电池、飞轮等储能元件技术的飞速发展,储能技术在城市轨道交通中得到日益广泛的应用.针对地面存储式再生制动能量利用装置,首先总结了储能装置可实现的功能,然后介绍储能技术在地面式再生制动能量吸收和利用装置中的应用现状,最后从储能装置的系统设计与评价方法、充放电控制策略、储能装置设计的角度分析了需要进一步深入研发的课题.  相似文献   

3.
城市轨道交通具有站间距离短、车辆运行密度高等特点,列车在频繁的起动与制动过程中会产生数量可观的制动能量。目前再生制动能量回收较多采用电阻吸收或逆变回馈加电阻的形式,能量回收率和利用率都较低。根据逆变回馈和电容储能的特点,组成逆变+储能的新型再生制动能量吸收装置:直流母线制动电能通过逆变器接入400 V车站低压配电系统,超级电容通过DC/DC双向变换器并联在直流母线上,较平稳的制动功率直接经逆变器给车站负荷供电,较大的尖峰功率由超级电容吸收,再供负荷或车辆起动加速用。根据列车的制动特性,以某地铁线路实际数据为例,计算了列车实际的制动功率和能量,给出了逆变器和储能的功率及容量配置方案。所提方案能够完全吸收利用再生制动能量,且所需储能容量较小。  相似文献   

4.
利用超级电容特性并结合城市轨道交通特点,设计一种用于城市轨道交通的储能装置,以维持在车辆启动和再生制动时的电压稳定,减少隧道内因电阻发热而产生的温升.通过吸收再生制动能量,在列车启动时释放能量,使其循环利用,实现节约环保.  相似文献   

5.
基于逆变回馈的地铁再生制动能量吸收的研究   总被引:2,自引:0,他引:2  
城市轨道交通车辆再生制动能量吸收是城市轨道交通系统的重要组成部分.分析了逆变回馈型再生制动能量吸收装置的构成、工作原理.建立了该装置的主电路及控制电路仿真模型,并对列车再生制动回馈的动态全过程进行了模拟试验.试验结果表明:该装置满足地铁列车再生制动能量的吸收利用以及稳定牵引网电压的要求,可解决实际工程问题.  相似文献   

6.
超级电容在地铁制动能量回收中的应用研究   总被引:3,自引:0,他引:3  
针对机车启动、制动对直流母线电压的影响,提出一种基于超级电容的储能装置,该装置通过双向DC-DC变换器为列车提供牵引或者吸收再生制动过程的暂态能量,分析了超级电容储能系统充放电控制策略,搭建了一个750V直流电气化铁路仿真平台,仿真结果验证了超级电容储能系统能够维持直流母线电压稳定,有效地防止城市轨道交通供电系统中电力负荷波动和避免再生制动能量的浪费。  相似文献   

7.
城市轨道车辆储能再生制动试验系统研究   总被引:3,自引:3,他引:0  
提出了一种能量互馈式城市轨道车辆储能再生制动试验系统方案,介绍了城市轨道车辆储能再生制动试验的原理及组成,分析了试验系统主电路的组成以及储能变流装置的电路拓扑,给出了储能变流装置3种不同的工作模态和工作原理的分析,结合电压电流双闭环控制实现超级电容的储能,从而控制再生制动能量的回收。同时介绍了城市轨道车辆储能再生制动试验系统的主要技术指标,并利用检测系统对试验数据进行采集和处理。城市轨道车辆储能再生制动试验系统具有节能、工作可靠、精度高等特点。  相似文献   

8.
针对现阶段城市轨道交通车辆采用电阻消耗再生制动电能带来的隧道温升、车体质量增加、能量浪费等问题,对城市轨道交通用再生制动锂电池储能系统进行研究,分析其工作原理、结构及功能,并提出锂电池储能系统充放电控制策略。以广州地铁4号线为例进行了仿真,仿真结果表明,锂电池储能系统可以有效抑制牵引供电网的电压波动。  相似文献   

9.
分析了地铁再生制动能量逆变回馈系统的工作原理,给出了基于多模块并联的地铁再生制动回馈变流器主回路设计及控制策略设计方法,并完成了样机的研制和试验。试验结果表明:该装置满足地铁列车再生制动能量的吸收利用及稳定牵引网电压的要求,可以实现交直流侧直接并联,其均流精度高、高频环流小、冗余度高。  相似文献   

10.
轨道车辆再生制动能量的吸收装置是城市轨道交通系统的重要组成部分。分别对电阻耗能型、电容储能型和逆变回馈型这三种类型的城市轨道交通车辆再生制动能量吸收装置的构成及其工作原理进行了深入分析,并比较了这三种类型装置的优缺点。开发逆变回馈型再生制动能量吸收装置无论从技术上还是造价上已具有可行性。  相似文献   

11.
基于列车制动的超级电容型储能系统的参数设计与控制   总被引:3,自引:0,他引:3  
为了吸收城市轨道列车再生制动产生的能量和维持供电网络电压的稳定,提出了一种基于非隔离双向DC-DC变换器的大功率超级电容型储能装置。分析了该储能装置的工作状态,并通过计算北京地铁5号线单列车再生制动反馈到电网的参数确定了该储能装置的主要参数。根据储能装置的数学模型和设计参数进行了储能装置双闭环控制器的分析,最后通过仿真验证了控制器的有效性和合理性。  相似文献   

12.
正地铁再生制动能量利用系统北京鼎汉新近推出的地铁再生制动能通利用系统是将地铁列车制动时产生的再生制动能量进行回收的一款节能环保产品。鼎汉同时具有电容储能系统和中压逆变回馈系统的成熟产品,并通过相关质量检测认证。电容储能系统:主要由双向DC/DC变流器和超级电容柜组成,将处于再生制动工况下的列车反馈的制动能量吸收到大容量电容器组中,当列车出站或供电区间有列车需要取流时将所储存的电能释放出去,使牵引网电压稳定在设定范围内,起到削峰填谷作用。  相似文献   

13.
基于超级电容的地铁列车再生制动能量利用分析   总被引:2,自引:0,他引:2  
为吸收地铁列车再生制动能量,对比了多种能量回收技术。研究一种基于非隔离双向DC/DC变换器的超级电容储能装置,分析了其工作原理和结构特点。在列车制动时,储能装置吸收制动能量,列车加速时释放能量,减少了能源浪费。根据地铁运行工况,分析了储能装置容量配置及能量管理控制策略。通过仿真验证了方案的可行性。  相似文献   

14.
过去地铁列车制动主要采用车载电阻制动,这种传统的制动方式会造成能量浪费,并且制动时还会产生大量的热,导致隧道内环境温度升高。近几年地铁列车普遍开始采用再生制动,但再生制动产生的电能不能被完全吸收利用时,多余电能会引起直流牵引网电压迅速升高,使得用电不安全。为了使再生制动产生的多余能量能被吸收,并且牵引网电压稳定,引入了逆变回馈系统,通过仿真软件MATLAB/SIMULINK验证当地铁列车再生制动装置投入使用时牵引网电压的变化以及牵引电机运行状态。  相似文献   

15.
随着轨道交通车辆再生制动能力的提高,列 车再生制动能量吸收利用成为地铁运营的主要节能减 排措施之一。介绍北京地铁运营线路供电系统中电阻 耗能型、储能型和逆变回馈型再生能量吸收装置的应 用情况,并对这些装置的优缺点进行对比分析,提出设 备接线方式、电气参数、运行状态以及装置容量要与地 铁供电系统实际运营情况相匹配的建议。  相似文献   

16.
白宣 《铁道技术监督》2021,(5):43-46,52
介绍北京地铁再生制动能量吸收装置的分类和特点,选取北京地铁9号线低压逆变回馈型装置,10号线中压逆变回馈型装置,8号线德茂、瀛海站电容型储能装置和房山线广阳城站飞轮储能型装置的用电和节能数据,对比分析不同类型再生制动能量吸收装置的节能效果.建议根据实际线路及车站情况,综合考虑线路坡度、曲线半径、行车密度、区间长度、客运...  相似文献   

17.
目前城市轨道交通再生制动能量大部分由电阻消耗,利用率较低.设计了储能型再生制动能量并网系统,研究了再生制动能量在并网系统与储能系统之间的分配关系.阐述了系统的组成及设计方法,给出储能优先和并网优先2种控制策略,并通过仿真进行对比分析.仿真结果验证了储能优先策略可行、有效,能够减小再生制动功率对交流电网的冲击,实现再生制动能量的循环利用.分别建立了逆变回馈系统和储能系统的试验模拟装置,通过试验结果验证了控制策略的可行、有效.  相似文献   

18.
飞轮储能系统具有瞬时功率大、储能密度大、效率高、使用寿命长、环保无污染等优点。基于飞轮储能在不同领域的技术优势,本文结合该项技术在国内外的应用情况以及国内城市轨道交通领域不同类型再生制动能量吸收装置的特点,介绍了飞轮储能系统工作原理和构成,对比分析了其在城市轨道交通应用的优势及方向,并介绍了飞轮储能系统在北京地铁的应用情况。随着飞轮生产成本的降低,飞轮储能技术在城市轨道交通领域将拥有更为广阔的应用前景。  相似文献   

19.
地铁车辆依靠牵引供电系统提供电能作为动力,由于车辆频繁的制动,产生的再生制动能量十分可观,最大限度的利用再生制动能量成为地体牵引供电系统节能的重要课题。以逆变型再生能量吸收装置为例,在分析其工作原理的基础上,对其各种并网方式、安装容量、系统影响等方面进行系统分析研究。  相似文献   

20.
为了解决城轨列车频繁牵引、制动造成的网压波动和能量浪费问题,针对应用于城市轨道交通的飞轮储能系统,提出一种基于牵引网直流侧电压的充放电控制策略,采用均速控制方法调节飞轮阵列因工艺与环境不同造成的转速差异,并在现有控制策略的基础上提出空载网压辨识算法,确保飞轮在中压环网电压波动时仍能正确动作。最后以北京地铁房山线为例,对含飞轮储能系统的牵引供电系统进行建模和仿真分析,并在牵引变电所接入飞轮储能装置进行现场实验。研究结果表明:接入飞轮后,牵引网压峰谷差值降低了33.2%,牵引变电所输出能量减少了23%,验证了控制策略的可行性和飞轮储能系统的稳压节能效果,为飞轮储能系统在城市轨道交通领域的进一步应用提供参考和借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号