首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本田VTEC技术 VTEC(Variable Valve Life Timing & Valve Electronic Control System)是世界上第一个能同时控制气门开闭时间及升程两种不同情况的气门控制系统,本田公司在其几乎所有车型上都使用了VTEC技术。VTEC意为可变气门正时及气门升程电子控制系统。与普通发动机相比,  相似文献   

2.
广本新雅阁(2.4L)的i-VTEC系统是VTEC VTC组成的高智能化气门正时和气门升程电子控制装置,结构框架图如图1所示。VTEC系统可以控制发动机在低转速区域和高转速区域时的气门正时和气门升程;VTC系统能根据发动机负荷对气门相位进行连续控制(可变凸轮相位)。所谓i-VTEC系统就是融合了上述两项技术的新系统。通过VTEC对气门升程,VTC对气门重叠(进气门和排气门同时开启的状态)进行周密的智能化控制,从而使大功率、低油耗和低排放这三个具有不同要求的特性都同时得到提高。其排放达到了欧-Ⅲ标准。  相似文献   

3.
解云 《汽车运用》2006,(7):47-48
本田汽车公司于20世纪80年代推出的可变配气相位和气门升程电子控制(Variable ValveTiming and Valve Lift ElectronicControl,简称VTEC)机构,其配气相位和气门升程可随发动机转速和负荷的变化而自动调节,从而最大限度地改善发动机的性能,充分满足发动机高、低转速工况的需要,使发动机在高速范围工况时输出更大的功率。VTEC机构的组成VTEC机构主要由气门(每缸2进2排)、凸轮、摇臂、同步活塞A、同步活塞B、正时活塞以及正时板等组成。其中凸轮有3个,它们的线型不同。除了普通发动机具有的主凸轮和辅助凸轮外,还在它们之间增设了一个…  相似文献   

4.
格蓝迪(GRANDIS)是三菱公司近期推向我国市场的一款新车型,配备2.4L、4气缸、16气门、单顶置凸轮轴的4G69发动机,每个气缸有2个进气门和2个排气门。三菱创新型气门升程和正时电子控制系统(MIVEC——Mitsubishi Innovative Valve timing & lifting Electronic Control System)的应用,是格蓝迪的一大特色。它可通过调节气门正时和气门升程来配合汽车的行驶状况,确保发动机获得最佳的配气相位。  相似文献   

5.
摩托车用可变气门定时及升程调速机构   总被引:2,自引:0,他引:2  
近年来可变气门定时及升程调速技术作为汽车发动机大功率、低油耗、低排放研究的重要一环,特别引人注目.在摩托车赛车上发动机向高转速、大功率化方向发展,但却有牺牲低中速区域的倾向;同时,以不降低高速输出功率、改善低中速输出功率为目标的可变气门定时及升程调速机构的开发也取得了进展.本文介绍已应用于日本铃木公司GSF400V型摩托车发动机上的VC(Variable Valve Contro1)系统.  相似文献   

6.
可变气门机构是进气门升程及配气正时可变的气门机构,如图1所示.采用VTEC的发动机,其凸轮轴除原有控制进、排气门的一对凸轮外,还增加了一个较高升程的凸轮C.此外,由凸轮推动的摇臂被分成三部分:主、中间和副摇臂.三根摇臂内部有一根液压控制的活塞锁栓,ECM控制液压系统,推动活塞使三根摇臂锁成一体时,则由高升程的凸轮进行驱动,从而可改变气门的开启程度,如图2所示.低速时,主与副摇臂未与中间摇臂相连,但分别由A、B两凸轮驱动,在不同时间与升程下驱动,副凸轮B升程较小,故只能使进气门的开度较小.此时虽然中摇臂也随中间凸轮运动,但在低速状态下对气门开启不起任何作用.高速时,如图3中箭头所示,正时活塞由于液压作用而移动.因此,主、副与中间摇臂就被两个同步活塞贯穿,使三个摇臂连成一体一起移动.在此情况下,所有的摇臂均由C凸轮驱动,使气门开启和关闭,并改变气门正时和升程,使之适应发动机的高速工况.  相似文献   

7.
CB400 SuperFour是本田公司以追求未来理想摩托车为目标而研制的,它是一款适用于城市、郊外及高速公路的全方位多用型摩托车,一经上市便受到广大用户的赞誉,也给骑手带来无比愉快的驾驶。本田公司开发的配置VTEC系统的(可变气门正时和升程电子控制系统)发动机,原来使用在本田的F1赛车上,通过该装置,发动机控制系统能根据发动机转速、负荷、车速以及水温等条件适时改变气门的升程、开闭、正时,从而切换发动机的工作特性,最大限度地提高了空气利用率和燃烧  相似文献   

8.
读编往来     
《汽车研究与开发》2009,(4):112-113
Q奥迪里面的AVS系统是什么?AAVS指的是奥迪可变气门升程系统(AudiVal velift System),它可以针对汽油发动机进气阀门正时和升程加以控制,而此一技术率先被导入奥迪  相似文献   

9.
在VTEC机构的DOHC发动机基础上进行了改进,开发了VTEC-E,VTEC,DOHC VTEC三种较为理想的新系列,其主要性能及参数见表1,对于VTECE发动机,采用了缩短燃烧时间,提高着火性,规定稳定燃烧的极限及控制空燃比等技术,在低转速区域,用停止一个进气门工作来实现稀燃,降低了燃油消耗,在高转速区域,用四气门全部工作,实现高功率性能,VTEC发动机用改变进气正时和升程的办法,兼备低转速区域的大扭矩与高转速区域的大功率,DOHC VTEC发动机通过分别改变进,排气门正时和升程的,办法,同时实现高转速高功率与低转速大扭矩。  相似文献   

10.
飞度三厢1.5     
三厢飞度装备的新1.5升发动机不但是排气量增大了.而且应用了本田招牌的VTEC可变气门正时和升程技术。此发动机的功率可达107马力,是目前国内功率最大的1.5升发动机,而且在1.6升发动机中也只有奇瑞旗云的进口发动机功率比它大。  相似文献   

11.
一、VTEC系统简介 广州本田雅阁轿车是一款具有跑车风采的豪华型轿车,发动机内装有可变气门正时和气门升程电子控制(VTEC)系统,如图1所示.该发动机每缸有4个气门.发动机低速运转时,主进气门以正常的开度开启,而辅助进气门则只是稍稍开启,以防燃油积聚在进气口内;当发动机高速运转时,主进气摇臂和辅助进气摇臂与中间进气摇臂连接,使气门开度增大.  相似文献   

12.
(上接2007年第10期) 利用四气门结构的气门正时和升程控制,可极大地改善燃烧效率.通常情况下,在发动机整个转速范围内,气门正时时间和升程是固定不变的,如果在低转矩时对气门正时时间进行优化,那么在高速运转时,发动机的性能则可能折中.  相似文献   

13.
为了使发动机在高转速时能提供较大的功率,在低转速时又能产生足够的扭矩,现代轿车发动机广泛采用可变气门控制系统,他能根据发动机的运转状况而改变配气相位或气门升程。本田轿车可变气门控制系统能同时控制配气相位和气门升程。  相似文献   

14.
奚旺 《汽车知识》2011,(3):68-71
首先要明确一点,发动机的动力表现主要取决于单位时间内气缸的进气量,就好像人体心血管功能的好坏与呼吸器官有着密不可分的关系一样。气门正时控制着气门开启的时间,而气门升程则控制的是气门开启的大小。从原理上看,气门正时调整的是发动机每次呼吸的时间,而气门升程调整的则是发动机每次呼吸张口的大小。尽管二者相辅相成,但气门升程技术对发动机的贡献更为直接。  相似文献   

15.
针对可变气门(Variable Valve Actuation,VVA)发动机开发过程中发生的凸轮轴及滚子摇臂(RockerRoller Arm,RRA)失效,描述了失效发生的背景,并借助CAE分析和先进检测技术对失效系统进行了研究。CAE分析结果显示:高升程凸轮与RRA的最大接触应力超过了设计安全值;低升程凸轮起主要作用时,发动机转速不能超过4 000 r/min。探伤和显微结构研究显示,凸轮轴存在裂纹,低升程凸轮硬度不够。  相似文献   

16.
可变气门升程技术能够实现在不同工况时为发动机匹配合适的气门升程,是改善发动机动力性能、提高燃油效率和减少有害排放的一种重要途径。介绍了可变气门升程技术的类型、实现途径及应用现状,分析了典型可变气门升程机构的结构及工作原理,并对其特点进行了比较。  相似文献   

17.
发动机工作时,气门升程的运动规律可连续地改变,这为发动机的研究提供了新的选择可能性。本文总结了为实现配气相位和气门升程可变的发动机配气机构,在FIAT型汽车上进行的各项工作。在试验台上和行驶期间的所有试验都是卓有成效的。这一革新特别适用于每缸2、3或4个气门的顶置凸轮轴发动机。  相似文献   

18.
可变气门升程系统能在发动机处于不同转速及不同负荷时匹配合适的气门升程,是解决发动机燃油经济性和动力性两者矛盾的核心技术之一。  相似文献   

19.
本田公司近期开发出了1款1.0 L汽油直喷涡轮增压发动机,兼具出色的环保性能和优越的驾驶性能。与配备了可变气门正时和升程电子控制系统(VTEC)的直列4缸涡轮增压发动机的燃烧过程一样,该款发动机采用了相同的设计理念,并通过相关技术尽可能降低摩擦。  相似文献   

20.
本田公司为了满足车用动力高功率、低排放的需求,对匹配飞度的发动机进行了升级,采用了功能更加丰富和强大的i—VTEC系统,VTEC系统是一种既可改变配气正时,又能改变气门运动规律的可变正时与升程控制机构,采用VTEC系统的发动机,可以满足在中低转速、高速时不同配气相位及不同进气量的要求,保证发动机无论在何种转速下运转都能使动力性、经济性及排放性达到最优状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号