首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
组合式同相供电方案能解决重载铁路中存在的负序和无功等电能质量问题并可取消牵引变电所处分相绝缘器。本文以朔黄铁路为例,基于典型牵引变电所实测数据设计组合式同相供电方案,以变压器温升为依据进行方案验证,并结合实际分析方案的经济性。结果表明组合式同相供电方案可提高系统整体经济效益,具有较高的应用推广价值。  相似文献   

2.
针对牵引供电系统存在问题,在原有同相供电基础上给出了一种组合式同相供电系统,分析了其构成原理及特点。除此之外,研究了组合式同相供电备用方案,设计了一套适用于组合式同相供电系统的继电保护方案。  相似文献   

3.
组合式同相供电装置(co-phase compensation device, CPD)是同相供电系统中的关键设施,牵引供电系统的安全稳定运行与其可靠性密切相关。以拓扑分析为基础,综合考虑到各个器件的组合关系,利用k/n(G)可靠性模型建立级联式CPD和MMC-CPD的可靠性分析模型。在满足同相供电装置正常运行的必要条件下对比分析级联式CPD和MMC-CPD的可靠性指标。最后针对MMC-CPD的特殊拓扑结构,分析子模块冗余配置对可靠度的影响,优化MMC中子模块的冗余数量,为单相组合式同相供电MMC-CPD冗余设计和运行维护提供依据。  相似文献   

4.
传统的混合电能质量调节器HPQC在背靠背变换器中采用LC耦合支路和L耦合支路来降低变换器的补偿容量和直流电压,但HPQC只能在特定的负载条件下达到最小补偿容量。为了在所有负载条件下保持变换器补偿容量处于较低水平,本文提出了一种改进型混合电能质量调节器,采用晶闸管开关支路代替常规的固定耦合支路,动态调整支路阻抗,能够有效降低变换器补偿容量。  相似文献   

5.
针对同相AT牵引供电系统,提出了一种采用全并联AT的双边供电(或多电源供电)的牵引网供电方式,对其电能损失在理论上与现有的AT分区所并联的单边供电系统进行了比较,优越性显而易见,并进一步对其供电臂的保护控制方案进行了分析.该牵引网供电方式能使负荷在上下行以及多个供电臂内进行均衡,有较好的供电质量,满足高速、重载的牵引发展要求.  相似文献   

6.
单-三相组合式同相供电技术作为牵引供电领域的新技术,对其进行可靠性评估是非常必要的。GO法是一种以成功为导向的可靠性评估方法,本文运用GO法基本原理,根据单-三相组合式同相供电变电所一种典型的主接线建立GO图,编写GO法计算程序,对其进行定量分析和定性分析,从而得出单-三相组合式同相供电变电所可靠性参数及其薄弱环节,进而提出了一些提高变电所可靠性的措施。  相似文献   

7.
温州市域铁路S1线采用公交化的运营模式,对列车速度的控制要求高,牵引负荷较大,列车自动过分相时运行安全得不到很好的保证。采用同相供电技术可以取消变电所出口处的电分相,并可较好地解决负序问题。本文以单相组合式同相供电系统为例,介绍了组合式同相供电系统的结构及原理,并基于相关牵引设计资料搭建单相组合式同相供电系统模型进行仿真分析,仿真结果表明该系统对负序有很好的治理效果。  相似文献   

8.
通过分析同相补偿装置运行方式对中性点电位漂移的影响,提出了减弱单相组合式同相供电装置中性点电位漂移的建议。  相似文献   

9.
针对电气化铁路对电力系统负序的影响而自身不得不设置很多分相的问题,研究一种单相组合式同相供电技术方案,采用单相牵引变压器为基础,配以适量的同相补偿装置的方法,在牵引负荷较小时,能够实现由单相牵引负荷到三相电力系统的平衡变换;在牵引负荷较大时,在满足国标要求的前提下兼顾同相补偿装置的经济性。同时以工程设计案例的形式加以分析,结果表明:单相组合式同相供电技术在充分发挥同相供电自身技术优势的前提下,能够有效减少主变压器的安装容量,随着大功率电力电子元器件产品国产化后质量提升及造价逐年下降,其在提高电气化铁路运能方面的性价比将大幅提升。  相似文献   

10.
为解决异相牵引供电方式存在的电能质量和电力机车过分相问题,将有源补偿和无源对称补偿技术相结合,提出基于平衡变压器接线方式的混合式同相牵引供电系统结构。文中给出混合式同相供电的统一补偿理论、无源补偿系统的无源元件参数计算方法、有源补偿的控制策略、无源和有源补偿的协调控制策略。最后,以采用YNvd接线方式的平衡变压器为例,采用MATLAB软件仿真验证该系统方案和控制策略的正确性。  相似文献   

11.
用于同相供电系统的对称补偿技术   总被引:12,自引:4,他引:12  
同相供电系统非常适用于高速和重载牵引,其实现的关键在于牵引变压器的接线方式和可调对称补偿技术,对于单相负载,通常采用Steinmetz电路实现平衡,本文讨论了Steinmetz电路的改进,提出了平衡补偿电路的最优配置以及与其相适应的牵引变压器接线方式 。  相似文献   

12.
为提升牵引供电网的供电品质并取消变电所的电分相,文章提出一种基于对称补偿的新型同相供电系统。首先介绍了基于三端口四象限变流器的新型同相供电系统的拓扑结构及工作原理,然后针对系统实现负序治理、谐波和无功综合补偿等目标,提出基于单相系统dq变换的三端口四象限变流器协同控制策略;最后根据实测负荷数据在Matlab/Simulink中搭建系统仿真模型,验证所提系统的可行性及有效性。  相似文献   

13.
同相供电系统对称补偿装置控制策略研究   总被引:8,自引:3,他引:5  
在介绍同相供电系统对称补偿的基本原理的基础上,说明了在同相供电系统中实现对称补偿的优越性,主要论述了同相供电系统对称补偿装置的容量配置方法和控制策略,根据负荷功率因数和负序将同相供电系统中负荷分为三种情况,并制定相应的控制策略,在实测数据基础上,通过仿真进行了验证,说明在不同负荷情况采用不同补偿方式和控制策略可以达到最佳的补偿效果。  相似文献   

14.
基于有源滤波器和AT供电方式的新型同相牵引供电系统   总被引:9,自引:0,他引:9  
2台YN,d接线变压器十字交叉构成的AT牵引供电系统,接线复杂,变压器容量利用率低,相邻供电区段必需用分相绝缘器分断,不利于高速铁路运行。由1台YN,d接线变压器加四桥臂有源滤波器构成的新型同相AT牵引供电系统,可以实现同相供电,取消分相绝缘器;可以节省变压器,原边中性点可方便接地;在有源滤波器的作用下,可以实现消除三相不平衡、动态滤除谐波和补偿无功,使变压器容量得到充分利用;由于采用了AT供电方式,因此可以获得综合经济性能优越的通信防护效果。仿真实验也证实了这一点。  相似文献   

15.
针对电气化铁道,在同相牵引供电基础上给出了一种牵引网全线贯通的供电方式。对同相贯通牵引供电系统的整体结构作了简要的介绍。另外,在研究贯通供电方式的前提下,设计了一种适合同相贯通供电的保护配置方案。  相似文献   

16.
为克服列车高速行驶中取流波动性而加剧的同相供电系统安全高效运行的不确定性,建立包括牵引变压器、潮流控制器、储能元件的同相供电系统数学模型。以牵引负荷功率为随机变量,形成刻画运行不确定性的潮流机会约束条件;以电压不平衡补偿、系统安全运行边界为确定性约束,计及混合储能服役性能退化影响,以牵引变电所电费成本和储能元件老化成本组成的日运行成本最小为优化目标,以潮流控制器控制方案和混合储能充放电策略为决策变量,建立同相供电系统随机优化运行模型,并将该模型转化为混合整数线性规划模型进行求解。算例分析结果表明:提出的优化运行策略在不确定性条件下可有效降低运行成本约13%,且混合储能循环寿命提高了约3 a。  相似文献   

17.
基于斯科特变压器的新型同相AT牵引供电系统   总被引:10,自引:0,他引:10  
针对电气化铁道牵引供电系统三相严重不平衡造成各供电区段需要用分相绝缘器分断,从而制约了高速、重载铁路的发展,提出了一种基于斯科特变压器的新型同相AT牵引供电系统,阐述了平衡变换原理及控制和补偿电流实时检测方法,仿真证实该文提出的平衡方式、检测与控制方法是正确的,同相供电系统方案切实可行。  相似文献   

18.
介绍各国主要单相交流牵引供电制式,总结各国为了解决制约单相交流牵引供电系统发展的电分相问题所采取的多种过分相方式,为了解决电能质量问题所采取的各有侧重点的治理措施,对比国内外同相供电技术并指出国外技术中值得我国借鉴之处,最后基于已有关键技术并结合储能和新能源等背景描绘了"绿色"牵引供电系统,为单相交流牵引供电系统的发展提供新思路。  相似文献   

19.
电气化铁道的牵引供电系统三相严重不平衡,存在大量的谐波和无功,各供电区段需要用分相绝缘器分隔,从而制约了高速、重载铁路的发展。基于阻抗匹配平衡变压器和AT供电方式的新型同相牵引供电系统,不仅可以解决以上问题,还继承了AT供电方式所特有的通信防护效果好、综合经济技术性能优越的特点;同时在有源滤波器的作用下,实现了单台双绕组工作变压器的接线方式,比原系统结线简单、维护方便。文中分析了系统平衡变换原理,讨论了系统的平衡方式、补偿电流检测与有源滤波器控制方法。分析和仿真证实本文提出的平衡方式和检测方法是正确的,同相供电系统方案是可行的。  相似文献   

20.
以5 MW同相补偿变流器为例,结合重载铁路牵引负荷实测数据,利用Bayerer模型和线性累积损伤理论评估不同运行方式下同相补偿变流器的可靠性,并计算了组合式同相供电系统的功率损耗。结果表明,在牵引负荷波动较小的情况下,增加同相补偿装置的出力可以有效降低同相补偿变流器的故障率,从而提高变流器的可靠性,但是系统的功耗会相应增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号