首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
新疆布尔津河桥,基础为高桩承台,墩位处水深2.50~3.50米,流速1.5米/秒,河床为砂砾土质,承台底标高置于河床底面以上。施工时采用无底木箱式围堰先台后桩法施工,取得了比较显著的效果。最近又在另一大桥(基础为双排8根基桩的高桩承台)采用此法施工取得了成功。先台后桩法施工用的无底木箱式围堰,  相似文献   

2.
安庆长江铁路大桥4号桥塔墩采用钻孔桩承台基础,37根变直径桩,桩长110 m,嵌入泥岩96.5 m;承台直径51m,厚8m,埋置在河床覆盖层中.根据该墩大直径、超深、嵌泥岩钻孔桩的特点,基础采用先围堰(直径56 m)后平台方案施工,先封底后钻孔.底节围堰采用无内支撑整体起吊下河,其余3节围堰在墩位处散拼接高,围堰采用无导向船的前、后定位船重锚锚锭定位方法定位、注水压重及吸泥机吸泥的方法下沉,并采取分区封底;钻孔桩采取清水钻孔工艺成孔;承台采取分次浇筑方法施工.实践证明该桥4号墩基础施工技术是可行的,围堰下沉姿态良好,封底成功,且经检测桩基均为Ⅰ类桩.  相似文献   

3.
郑州黄河公铁两用桥主河槽承台施工方案   总被引:1,自引:0,他引:1  
郑州黄河公铁两用桥主桥承台位于主河道内,通过对各桥墩承台所处环境及施工时间段的不同进行施工方案优化,确定靠近主河道的主桥1号墩承台采用插打钢板桩、人工辅助开挖、分层支护、局部深井降水、无需封底的施工方法;2,3,5号墩承台采用插打钢板桩围堰、空压机配合吸泥机清淤、灌注水下混凝土后抽水的施工方法;4号墩承台采用插打钢板桩围堰基坑内抽水,底部干封混凝土的施工方法;6号墩承台采用在河道边筑岛、墩位外深井降水、基坑开挖的方式进行承台施工;其余0号墩、7~12号滩地墩承台采用常规的基坑开挖配合深井降水施工。顺利实现了该桥主河槽承台施工,取得了很好的综合效果。  相似文献   

4.
《公路》2020,(8)
为提高因河床冲刷导致桩身外露的分离式桥梁基础的承载力,基于等效替代的理念,提出分离式桥梁整体抬桩加固方法。以G50沪渝高速太湖大桥加固工程为依托,开展了分离式桥梁整体抬桩加固设计方法、新增承台施工技术、新增桩基主动抬桩技术和施工安全评估研究,实现了不中断交通条件下的桥梁抬桩加固安全施工,提高了桥梁桩基承载力及整体稳定性,取得了良好的经济和社会效益,为我国大量的河床冲刷桩基外露的桥梁提供了加固技术参考。  相似文献   

5.
公安长江公铁两用特大桥主桥为(98+182+518+182+98)m双塔钢桁梁斜拉桥,该桥4号主墩采用2.8m/3.1m变直径钻孔桩承台基础,共有36根桩,承台为圆端形,长58.4m、宽33.6m、高6m,承台埋置于河床中。4号墩基础采用双壁钢套箱围堰施工方案,先围堰、后平台,先钻孔、后封底,最后进行承台施工。施工中采取了以下关键技术:底节围堰(长68.2m、宽40m、高16m)采用气囊法整体下河;由底节围堰、围堰内支撑桁架和桩位钢护筒组成半浮式水上平台作为钻孔平台;钻孔桩采用泥浆护壁的气举反循环旋转钻进工艺成孔;在钻孔桩施工后,下放围堰并接高,灌水、吸泥、下沉围堰,下沉到位后分区进行围堰封底,围堰抽水,分2层、按大体积混凝土工艺进行承台施工。  相似文献   

6.
援马尔代夫中马友谊大桥主桥为(100+2×180+140+100+60)m混合梁V形支腿连续刚构桥。为适应桥址处特殊的珊瑚礁地质条件和恶劣的强涌浪深水海洋环境,主桥基础均采用高承台群桩基础。19号、23号主墩采用7根直径3.2~2.8m的变截面钻孔灌注桩,20~22号主墩采用7根直径3.6~3.2m的变截面钻孔灌注桩,桩基均按梅花形布置。19号主墩桩位处海床坡度较陡,选用高低桩方案,桩长98m和108m。23号主墩墩位地层中存在大型空洞,故该墩桩基穿过空洞区进入其下方稳定地层2倍桩径左右,桩长均为75m。20~22号主墩桩长分别为110,106,88m。各墩均设置六边形承台,承台厚度均为4.0m,承台顶面以上设置基座与V形支腿或主梁0号块相连。为提高单桩水平承载力,将钢护筒设计为永久结构,共同抵抗桩身弯矩。利用桩底后压浆处理提高桩基竖向承载力。  相似文献   

7.
某既有铁路桥梁因水害导致墩身位移,为快速无损进行桩基完整性检测,采用基于桩侧切割小平台作为激发点的瞬态激振的双速度法,共检测5根角桩,判定3根桩无缺陷反射,2根桩局部有缺陷异常反射。对其中2根无缺陷桩和1根有缺陷桩进行钻孔验证,3根桩芯样结果与检测结果一致。针对墩身位移病害,分两阶段进行加固处治,第一阶段主要采取山体侧清方卸载、设置环形截水沟、临空侧设置钢板桩及填土反压等应急抢险措施,阻止病害程度进一步加剧;第二阶段综合采取增设仰斜孔排水、锚杆框架梁、锚固桩、扩大承台及加桩等永久整治措施。经两阶段加固处治后线路恢复运营,桩身应变、墩身及轨道位移监测数据均正常。  相似文献   

8.
长昆客专罗旧舞水特大桥主桥为(48+2×80+48)m连续梁桥,1号~3号桥墩位于主河槽内,低桩承台嵌入河床裸岩中,设16根1.5m钻孔桩。根据裸岩河床、低桩承台的特点,确定水中墩基础施工采用施工栈桥为交通便道、施工平台,栈桥标准跨度18m,设4组贝雷梁、双排钢管桩基础,并在钢管桩周围抛填砂砾、投放石笼或下放钢套箱、灌注水下混凝土以及拉设缆风绳。水中墩基础采用矩形双壁钢围堰围护方案,按照"先堰后桩"顺序施工。水中墩基础施工中,采用长臂挖机清底,利用岩石乳化炸药和非电微差雷管进行水下岩石爆破;钢护筒采用振动锤夹持、插打;双壁钢围堰依靠钻孔桩护筒、平台辅助钢管桩逐块拼装,用倒链下放、汽车吊接高下沉施工;围堰封底混凝土等强后,进行钻孔桩、承台和墩柱施工,最后拆除围堰。  相似文献   

9.
跨越大江大河经常采用特大桥型式,桥梁基础大且处于复杂的环境中。以清云高速公路西江特大桥云浮侧主墩承台施工为依托进行分析讨论,摸索出了一种在斜河床面上组织大型承台施工的方法。相比传统的钢板桩围堰结构,提出了采用钢管桩挡土、设置强圈梁和内撑系统,有效克服了斜河床面产生的不均衡土压力,保证了围堰施工安全,可为类似项目提供参考依据。  相似文献   

10.
徐京海  潘博 《世界桥梁》2022,50(3):39-44
马鞍山公铁两用长江大桥主航道桥为(112+392+2×1 120+392+112) m三塔钢桁梁斜拉桥,Z3号墩基础承台为哑铃形结构,顶、底面高程分别为+4.5 m、-5.0 m,平面尺寸为36.8 m×81.8 m。结合桥位处地质情况,承台采用PC工法组合桩围堰进行基础施工,围堰平面尺寸为87.6 m×42.2 m、高30 m,其侧板采用?820 mm×14 mm锁口钢管桩+拉森Ⅵ型钢板桩交替布置的组合桩形式,围堰高度范围内设3层内支撑,经验算围堰结构满足规范要求。施工中,采用基准桩定位、分阶段消除累积误差以及精确调整合龙等技术保证围堰顺利合龙;通过深基坑井点降水开挖技术保证开挖面始终处于无水环境;通过动态监测技术对基坑支护结构受力及变形实施动态监测确保深基坑施工安全;采用优化原材料配合比及承台混凝土内分层布设循环冷却水管等措施有效减小混凝土水化热,保证承台混凝土施工质量。  相似文献   

11.
黄洲大桥跨越珠江东航道 ,全长 12 0 5m ,主桥为V型刚构—组合箱梁桥。黄洲大桥主墩承台属低桩承台 ,承台面低于平均低潮位 ,承台底位于河床面以下 1m。采用钢板桩围堰施工工艺。介绍广州黄洲大桥主墩承台钢板桩围堰施工工艺。  相似文献   

12.
《桥梁建设》2021,51(1)
武汉青山长江公路大桥主桥为主跨938m的斜拉桥,北主墩基础采用哑铃形双壁钢套箱围堰(长103.8m×宽43.3m×高37.5m)施工。围堰封底采用C30混凝土,厚6.5m、方量约20 000m3。封底施工中,在承台系梁范围内布置8根1.5m的钻孔桩作为封底施工辅助桩,与承台主体钻孔桩同期施工,在主体钻孔桩、辅助桩钢护筒外侧加焊28mm钢筋剪力环,以提高围堰封底可靠性;根据水下地形扫描绘制以围堰为中心的大范围河床高程图,采用抛填卵石吨袋、皮带运输机抛填卵石相结合的方法封堵围堰底口;将底节钢围堰分成7个区域,采用垂直导管法按区域编号顺序依次连续灌注封底混凝土,降低封底施工控制难度;在围堰外壁板布置15个振弦式应变计,实时监测围堰的受力,保证施工过程中围堰结构安全。  相似文献   

13.
武汉青山长江公路大桥主桥为(350+938+350)m双塔双索面斜拉桥,大桥南主墩基础由大直径钻孔桩及哑铃形承台组成。承台平面尺寸巨大(98.9m×39.5m),埋置深度约15m,需进行超大型深基坑施工。承台采用锁口钢管桩围堰施工方案,围堰平面设计为101.7 m×41.3m的正多边形哑铃结构,总高35m,其中锁口钢管桩长33m,钢管桩顶部设有2m高单壁钢围堰(用以现场根据实时水位进行接高)。围堰共设有3层内支撑,内支撑为1.8m×1.2m的钢箱结构,封底混凝土厚5m,在承台系梁处设计8根1.8m辅助桩以减小封底混凝土应力。采用MIDAS软件对围堰整体及局部受力进行分析,结果表明,围堰结构各项指标均满足规范要求。  相似文献   

14.
江口浈江铁路特大桥为22跨单线简支T梁桥,17号~20号墩为水中墩,水深约9 m,承台埋置深度2.12~3.12 m,河床地质为砂岩夹砾石.经多方案比选,确定采用先桩后围堰法施工承台:桩基施工完成后利用钢护筒搭设平台,进行水下爆破挖槽,埋设单壁钢围堰,抽水后进行承台基坑开挖和承台、墩身施工.实践证明,在浅覆盖层、砂岩地质条件下,采用埋设单壁钢围堰法施工承台可减少水下爆破开挖量,降低工程造价,缩短工期.  相似文献   

15.
正2019年7月15日,孟加拉帕德玛大桥主桥最后一根直径3m、长度近110m、重达500t的钢桩被插打至河床设计标高(见图1)。至此,主桥钢桩全部插打完成,大桥后续将进行承台、墩身及钢梁架设等相关工作。  相似文献   

16.
浅覆盖层河床承台采用钢板桩围堰施工,一般钢板桩入土深度均不能满足整体倾覆稳定性要求。针对穗莞深城际轨道SZH-5标东江北干流特大桥73号、74号墩浅覆盖层低桩承台设计施工,介绍浅覆盖层钢板桩围堰入土深度不够,导致整体稳定性不满足要求,采取施打钢管钢筋混凝土护桩方式,增加围堰整体稳定性,避免其整体倾覆的设计和施工。  相似文献   

17.
《公路》1965,(6)
钻孔灌注桩结构的设计仍按一般桩基的计算原理进行。桩的最小中心距一般采用按桩直径的二倍半。在桩的布置合理和钻进不困难的情况下,可适当增加桩长或桩径从而减少桩数,以减少承台和墩台身结构的工程量。桩的直径根据桩基结构的力学计算和地基土的强度结合桩长要求,予以确定。目前已采用的直径为50~125厘米。最大桩长已达25米。水下灌注混凝土的标号根据桩基结构计算决定,一般采用150~200号。坍落度为18~20厘米。根据内力计算确定的桩内主筋直径不宜小于16毫  相似文献   

18.
杨河大桥为一座钢筋混凝土T型梁桥,桩基为直径1.2m的钻孔灌注桩,桩基嵌入中风化粉砂质泥岩,平均桩长12.5m。由于河床段上下游长期人工取砂及严重冲刷,桥墩横系梁及桩基已经外露2~4m,桩基的外包混凝土部分钢筋外露锈蚀。河床面以下4~5m均为砂砾层,如河床进一步冲刷,将严重削弱桥梁的承载能力及影响桥梁的整体稳定,为保证桥梁的安全,对基础采用微型桩托换技术进行整体加固。  相似文献   

19.
湖北襄阳汉江五桥位于襄阳鱼梁洲南端,横跨汉江左、右航道。开工前桥位下游崔家营水库蓄水以及桥位附近采砂船作业,施工阶段承台埋深与河床覆盖层均与设计阶段发生变化,围堰大部分位于透水的卵石河床中,致使钢板桩锁口之间透水严重,无法采用常规措施进行封堵。通过设置"内套箱",浇注混凝土,形成钢板桩与混凝土组合围堰,解决了围堰透水问题,完成了该区域承台施工,并取得了一定的施工经验。  相似文献   

20.
以普和金沙江特大桥主桥基础施工为例,探讨在深水中河床覆盖层薄或裸露基岩的地质条件下,采用将自浮首节钢围堰整体下水,并在承台施工位置再接高的"先堰后桩"施工方法。工程应用结果表明,在河床覆盖层薄或裸露基岩的地质条件下采用"先堰后桩"方法进行水下桩基、承台施工是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号