共查询到19条相似文献,搜索用时 62 毫秒
1.
道路交通事故多因素时间序列宏观预测模型 总被引:2,自引:0,他引:2
针对现有道路交通事故预测方法在实际应用中的不足,引入多因素时间序列法,建立了道路交通事故多因素时间序列宏观预测模型.该预测模型兼有单因素时间序列法和多元线性回归法两者的优点,通过单因素时间序列法可以方便、快捷地得出事故影响因素的预测值,而利用多元线性回归法可将各种事故影响因素综合起来,预测出道路交通事故总体发展趋势.实例计算证明,道路交通事故多因素时间序列宏观预测模型能很好地适用于道路交通事故预测,同时具备了所需数据资料较少、建模简单、计算快捷等优点. 相似文献
2.
指出了预测对道路交通安全性的重要意义以及传统预测方法存在的缺陷;运用神经网络建立时间序列的道路交通事故预测方法,克服了传统预测方法必须事先构造函数的不足之处。分析表明, 该方法的预测精度较高。 相似文献
3.
道路交通事故灰色Verhulst预测模型 总被引:20,自引:4,他引:20
为提高道路交通事故灰色预测模型的预测精度, 分析了GM (1, 1) 模型和灰色Verhulst模型的特点, 发现GM (1, 1) 模型适用于具有较强指数规律的序列, 只能描述单调的变化过程, 而Verhulst模型则适用于非单调的摆动发展序列或具有饱和状态的S形序列。针对近年来中国道路交通事故表现为具有饱和状态的S形过程, 建立交通事故Verhulst预测模型。Verhulst预测模型和GM (1, 1) 预测模型预测的2004年交通事故死亡人数分别为10.87万人和11.72万人, 相对误差分别为1.49%和9.43%, 可见Verhulst模型的预测精度明显优于GM (1, 1) 模型。 相似文献
4.
道路交通事故死亡人数预测模型 总被引:3,自引:1,他引:3
为了对中国未来的交通安全形势做出科学预测, 分析了中国道路交通安全状况的评价指标和主要影响因素, 建立了以机动车保有量、人口、公路里程、客货运输周转量和国家控制力度为参数的道路交通事故死亡人数预测模型, 并对1991~2004年各年的死亡人数进行了计算和未来年份死亡人数进行了预测。预测结果表明: 预测模型精度高, 平均预测误差为3.9%;得出2010年和2020年中国道路交通事故死亡人数的预测值分别为14万人和17万人, 死亡人数由上升转为下降的转折点出现时间约在2010年到2015年之间。 相似文献
5.
6.
7.
目前,我国道路交通事故死亡人数不仅占据国内各类安全生产事故死亡人数的绝对数,而且已居世界首位。2005年,全国各类安全生产事故死亡126760人,其中道路交通事故死亡98738人,约占总数的77.9%;2006年,全国各类安全生产事故死亡112822人,其中道路交通事故死亡89455人,约占总数的79.3%。公安部刘金国副部长在2007年3月26日召开的全国道路交通安全工作部际联席会议第三次会议上发言指出,研究建立科学考核体系,[第一段] 相似文献
8.
道路交通事故预测是道路交通安全研究的一项重要内容. 针对BP神经网络在道路交通事故预测中精度不足及收敛速度慢的问题,引入量子神经网络并构建道路交通事故预测模型. 模型通过对道路交通事故时间序列进行相空间重构,有效扩充训练样本数量;且隐含层神经元采用态叠加的激励函数,对道路交通事故数据的特征空间进行多层梯级划分,以快速匹配输入数据与特征空间的对应关系,提高模型的收敛速度;在训练过程中动态调整量子间隔,以响应事故数据的强随机性. 实验结果表明,该预测模型能够较好地适应道路交通事故数据的特性,且预测精度和收敛速度较改进BP神经网络有显著提高. 相似文献
9.
道路交通事故预测模型的构建与应用 总被引:8,自引:0,他引:8
姜华平 《山东交通学院学报》2003,11(1):35-38
介绍了基于多元线性回归分析和灰色理论的道路交通事故预测模型的构建,分析了道路交通事故预测模型在交通事故的预防和交通安全管理决策中的应用. 相似文献
10.
介绍人工神经网络理论,论述BP神经网络的模型结构与原理,利用BP神经网络构建了交通事故预测模型,用MATLAB语言编写了相应的程序,并给出了模拟与预测的结果。模拟结果表明,构建的BP神经网络预测模型是成功的、有效的。 相似文献
11.
针对道路交通事故预测具有随机波动性较大、信息量较少和非线性数据序列预测的特点,引入支持向量回归机(SVR),建立基于SVR的道路交通事故预测模型。通过实例计算,证明基于SVR的道路交通事故预测模型具备非线性、所需数据资料较少、建模简单和计算快捷等优点,同时与RBF神经网络预测模型相比,该模型的预测精度高、泛化能力强,更适用于道路交通事故预测。 相似文献
12.
13.
����������ı�����· ��ͨ������Ԥ���о� 总被引:4,自引:2,他引:4
在总结交通流短期预M方法发展趋势的基础上,分别介绍了基于常规的BP神经网络和基于RBF神经网络的交通流量短期预测模型,并重点研究RBF网络模型的预测性能,确定了关健参数、的最优值.最后应用两种模型时北京环路实测交通流数据进行了预刚分析,实验结果表明,两种模型都可以满足实际交通流诱导的需要,BP模型在预则精度上稍优于RBF模型,但后者在学习速度和学习稳定性等方面明显优于前者. 相似文献
14.
在传统多种单项预测模型与组合预测方法的基础上,利用BP神经网络技术的非线性映射能力,在多个预测模型与实际数列之间建立一种非线性关系,对运量预测结果进行优化,以达到提高预测精度的目的.通过实例分析,表明这种经过BP神经网络优化后的预测模型,可一定程度上克服传统单个预测模型的部分局限性,提高预测精度,用于运量预测是可行的. 相似文献
15.
为了提高船舶交通流量的预测精度,在BP神经网络的基础上,结合遗传算法(GA)建立一个新的预测模型.该模型利用GA自适应搜索能力和较快的收敛速度,进而确定BP神经网络中的最优权值和阈值.以青岛港2011—2019年船舶交通流量统计数据为例,进行仿真实例验证.结果表明,与传统的BP神经网络相比,该模型能显著地提高船舶交通流量的预测精度,用于预测船舶交通流量具有一定可行性. 相似文献
16.
道路交通事故黑点的预测鉴别是改善道路交通安全状况最重要、最关键的一步,采用基于GA-BP神经网络算法与粗糙集理论相结合的方法建立交通事故黑点预测模型.分析天津市津围公路的交通事故统计数据,通过GA-BP神经网络算法建立静态单元,考虑静态道路状况,分析得出道路的事故黑点样本.考虑实时动态道路交通环境条件的影响,并利用粗糙集理论建立有效的交通道路事故黑点预测模型,2种理论的有机结合,减少糙杂繁冗的数据量,降低伪报警率,提高事故黑点的预报精度,并通过实例进行实证分析. 相似文献
17.
��������������ĵ�·��ͨ�¹�Ԥ�� 总被引:1,自引:0,他引:1
道路交通事故预测是道路交通安全研究的一项重要内容. 针对BP神经网络在道路交通事故预测中精度不足及收敛速度慢的问题,引入量子神经网络并构建道路交通事故预测模型. 模型通过对道路交通事故时间序列进行相空间重构,有效扩充训练样本数量;且隐含层神经元采用态叠加的激励函数,对道路交通事故数据的特征空间进行多层梯级划分,以快速匹配输入数据与特征空间的对应关系,提高模型的收敛速度;在训练过程中动态调整量子间隔,以响应事故数据的强随机性. 实验结果表明,该预测模型能够较好地适应道路交通事故数据的特性,且预测精度和收敛速度较改进BP神经网络有显著提高. 相似文献
18.
����Elman������ĵ�·����ʱ��ͨ��Ԥ�ⷽ�� 总被引:3,自引:0,他引:3
以道路子网为研究对象,采用Elman神经网络实现道路网多断面交通流短时预测. 首先通过提取交通流空间特性对道路网进行划分,降低道路网整体分析复杂度及解空间维数,提高交通流预测的计算精度和效率;其次以实时采集的交通流数据为基础,并以重构的交通流时间序列作为输入,采用Elman神经网络实现道路网多断面交通流同时预测;最后,基于城市快速路多断面交通流量数据对短时交通流预测方法进行验证,并与BP神经网络预测结果进行对比分析. 验证结果表明,本文提出的道路网划分方法能够划分出满足预测需求的子路网,在划分的子路网上,应用Elman神经网络能够实现道路网多断面同时预测,且预测效果优于BP神经网络. 相似文献