首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
针对自动驾驶车辆纵向速度的跟踪控制问题,提出了基于模型预测控制和微分先行比例-积分-微分(PID)的双层闭环控制策略:基于模型预测控制原理设计速度上层控制策略,采用层次分析法确定目标函数中的权重系数,计算出适应行驶条件的期望加速度;通过车辆逆纵向动力学模型计算对应的驱动力和制动力,控制车辆速度,采用微分先行 PID 进行反馈调节。结果表明:在该策略下车辆加速或减速行驶时,车辆具有较好的跟踪控制性能。  相似文献   

2.
针对中国大学生方程式赛车(FSAC)在比赛中横向-纵向协同控制的轨迹跟踪精度和稳定性问题,根据现代控制理论和经典控制理论提出一种以纵向速度为结合点的线性二次控制器(LQR)和比例-积分-微分算法(PID)的横纵向协同控制策略,并根据赛车相对参考轨迹的位置设计了一种协同控制器。建立二自由度车辆动力学模型,基于该模型设计了横向LQR位置跟踪控制器和纵向PID速度跟踪控制器。所设计的控制策略在CarSim和Simulink搭建的循迹工况联合仿真场景下进行仿真验证,仿真结果为纵向位置偏差小于0.07 m,横向位置偏差小于0.03 m。对控制算法进行实车验证,结果表明,该策略有效提高了赛车的轨迹跟踪精度和行驶稳定性。  相似文献   

3.
为提高车辆自动驾驶系统的运动性能,基于模糊逻辑和滑模控制理论设计了一种车辆纵向和横向运动综合控制系统。该控制系统通过对前轮转向角度、发动机节气门开度、制动液压及主动横摆力矩进行协调控制,使车辆能够以期望速度在理想道路轨迹上行驶,并提高车辆在行驶过程中的操纵稳定性。仿真结果表明:纵向和横向运动综合控制系统能够提高车辆在不同行驶工况下的跟踪性能和运动性能,在车辆自动驾驶过程中是有效的。  相似文献   

4.
为了提高无人驾驶车辆在直角转弯、连续弯道和弧形弯的复杂路况下路径跟踪精度、行驶稳定性与安全性,提出了一种改进的模型预测控制算法。该改进算法是根据行驶路径弯曲度确定车辆在平坦路面上不发生滑移的最大纵向速度,即车辆纵向速度不是假定恒定值。基于模型预测控制,建立车辆运动学模型,设置以速度和前轮转角为约束条件,设计以位置偏差和控制增量为目标函数,获得最优前轮转角和行驶速度。最后,借助某新能源汽车有限公司提供的无人驾驶车辆平台与测试场地,试验对比分析了在复杂路况下改进的模型预测控制算法与纵向速度恒定的模型预测控制算法时车辆路径跟踪效果,试验验证了改进模型预测控制算法的有效性与优越性,保证了车辆的路径跟踪精度、行驶平稳性与安全性。  相似文献   

5.
针对传统自动紧急制动策略制动减速度波动大、制动过程乘坐舒适性及弯道制动安全难以保障的问题,提出一种基于深度强化学习的汽车自动紧急制动策略.建立了包括纵向、横向及横摆运动的3自由度车辆模型,根据碰撞预警时间设计奖励函数,应用深度确定性策略梯度算法设计了基于深度强化学习的自动紧急制动策略,开展了直道行驶工况与弯道行驶工况仿...  相似文献   

6.
针对车辆在纵向运动和横摆运动时的强耦合关系给车辆动力学控制带来的困难,以四轮独立电驱动车辆作为研究对象,基于微分几何理论设计了车辆系统运动解耦控制方法,将非线性强耦合的四轮驱动车辆动力学系统解耦为纵向和横向两个相对独立运动控制子系统,并设计了鲁棒控制器,以提高抵抗车辆行驶时不确定外力如侧风的干扰能力。基于 Trucksim 软件建立四轮驱动车辆模型,并针对车辆解耦控制策略和抗干扰策略进行了仿真测试。结果表明,相比于无解耦控制的车辆,采用微分几何解耦控制的四轮独立驱动车辆纵向速度偏差降低了 82.1%,横摆角速度偏差降低了80.7%,且微风干扰下的抗干扰能力明显改善,车辆稳定性显著提升。为验证该运动解耦控制策略在实时系统中的控制效果,还进行了硬件在环试验,结果表明,硬件在环试验的结果与仿真结果一致。  相似文献   

7.
为解决分布式电驱动车辆驱动系统主动容错控制大多需要依赖于复杂、非线性车辆模型以及精确故障信息这一问题,提出了基于多输入多输出无模型自适应主动容错控制方法。该方法在控制系统设计时仅利用车辆系统的多个输入输出信息,在各个失效工况下,通过驱动系统和转向系统的协同容错控制,保证车辆既能维持期望车速也不偏离既定轨迹行驶,并通过理论推导证明了控制器单调收敛性和有界输入输出。基于MATLAB/Simulink和CarSim的联合仿真对控制算法有效性进行了验证,典型工况下,整车纵向速度误差维持在3%以内,横向不失稳以及不跑偏,确保了行驶安全;在此基础上通过驾驶模拟器实验验证了控制算法的实时性。  相似文献   

8.
李以农  卢少波  杨柳 《汽车工程》2007,29(8):692-697
为了实现复杂工况下车辆自动跟踪控制,建立了纵横向耦合车辆模型,研究了车辆在弯道变速行驶工况的动力学耦合控制问题,根据滑模控制以及动态表面控制理论,提出了一种基于车辆转向与驱动控制的综合控制器,并针对横向车速不可测,设计了横向速度观测器。仿真结果表明该综合控制器具有良好跟踪性能,在复杂工况下表现出较好的动、静态特性。  相似文献   

9.
针对无人驾驶车辆在极限工况下跟踪控制精度和稳定性均难以保障的问题,提出一种纵横向稳定性综合协调控制方法。首先对无人驾驶车辆在摩擦极限下的速度进行规划,通过纵向加速度前馈和状态反馈控制器实现极限车速下的速度跟随。其次将预瞄前馈与人工势场反馈相结合设计了横向路径跟踪控制器。提出了基于期望与实际横摆角速度偏差的稳定性控制策略,优化纵向控制的驱动力矩。Simulink/Carsim联合仿真结果表明,所提出的纵横向协调稳定控制方法可在极限工况下改善无人驾驶车辆瞬态响应,抑制道路曲率突变处的超调量,减少路径跟随中的稳态误差,提高了无人驾驶车辆的轨迹跟踪精度和弯道运动过程中的横向稳定性。  相似文献   

10.
为保证车辆弯道行驶的安全,综合考虑影响车辆行驶安全的人、车、路和环境等因素,运用层次分析法和加权最小平方法建立多层次车辆弯道行驶安全度静态因素综合评价体系。基于车辆动力学理论分析车辆弯道行驶临界车速,通过引入安全系数k,将车辆弯道行驶安全度评价模型与临界车速结合,提出基于人车路协同的车辆弯道安全车速预测模型。仿真结果分析表明,该模型可预测车辆弯道行驶安全车速,为车辆弯道车速预警提供一种方法。  相似文献   

11.
在自动驾驶车辆与人工驾驶车辆混行的复杂交通环境中,如何减小驾驶行为截然不同的2类车辆间的复杂相互作用对于车辆行驶安全性、乘坐舒适性和交通通行效率的影响,是当前自动驾驶决策与控制领域亟待解决的关键问题。提出了一个人机混驾环境下人工驾驶车辆与自动驾驶车辆之间的非合作博弈交互框架。首先,综合考虑车辆加速度线性递减的驾驶人纵向操纵特性、差异化配合程度和不同的延迟响应特性,建立人工驾驶车辆的纵向博弈策略。其次,考虑自动驾驶车辆与周围车辆的安全性约束,以及自动驾驶车辆在换道过程中的舒适性和通行效率目标,设计了自动驾驶车辆的纵向博弈策略。然后,基于主从博弈理论对不同混驾环境下人工驾驶车辆与自动驾驶车辆的博弈交互问题进行求解,得到最优的换道间隙和自动驾驶车辆的纵向速度轨迹,并采用模型预测控制方法规划出自动驾驶车辆的横向安全换道轨迹。最后,根据人工驾驶车辆不同配合度和延迟响应时间的差异,设计了多组人机混驾试验工况进行验证。试验结果表明:自动驾驶车辆能够快速准确识别人工驾驶车辆的配合度,选择出最优的目标换道间隙,并与间隙周围的自动驾驶车辆协作来汇入目标间隙。在换道过程中,自动驾驶车辆始终与周围车辆保持安全...  相似文献   

12.
弯道侧滑对汽车行驶安全性具有重要影响。为提高车辆在弯道行驶的安全性,文中设计一种弯道行驶防侧滑预警与控制系统。首先对汽车弯道行驶工况进行受力分析,提取弯道行驶安全影响因素;然后对预警与控制系统原理图进行设计,针对汽车侧滑时驾驶员反应时间不足及制动时安全性情况设计了预警安全系数及点刹制动两种方案;最后在控制成本和避免警报过多干预驾驶员驾驶行为的前提下对预警与控制系统模块进行设计及装置选型,采用车辆稳定性控制(DSC)系统现有传感器和预警声道由弱至强的方法实现预警和控制,使整个系统经济可行且适用性较强。  相似文献   

13.
针对自动驾驶车辆行驶轨迹的横向跟踪问题,设计了线性时变模型预测控制器。以车辆3自由度动力学模型为预测模型,以横向位置偏差最小为主要控制目标,考虑车辆状态约束、控制约束和轮胎侧偏角约束,优化了自动驾驶车辆轨迹跟踪安全性、转向稳定性和操作可行性等多目标性能。搭建MATLAB/Simulink和CarSim联合仿真模型,并将所设计的控制器控制效果与熟练驾驶员操纵结果、线性二次规划控制器控制效果进行了比较分析,结果表明,所设计的控制器可以有效解决多约束条件下自动驾驶车辆行驶轨迹的横向跟踪问题,且在安全性、转向稳定性和操作可行性方面具有显著的优势。  相似文献   

14.
为理解驾驶员行为特征,提高自动驾驶汽车的类人驾驶能力,借鉴国外研究成果,基于自然驾驶数据集,对驾驶员在弯道行驶过程中的行为特征开展了研究。选择车辆纵向速度、侧向加速度、横摆角速度和车速作为驾驶员行为特征,选择弯道曲率半径作为道路几何特征,利用车辆动力学原理进行弯道工况识别,通过核密度估计及相对熵对数据集特征参数分布的收敛性进行验证,并对弯道行驶过程中驾驶员行为特征及道路几何特征进行了统计分析。分析结果可以为设计具有类人操作特性的自动驾驶或驾驶辅助个性化系统提供数据支撑。  相似文献   

15.
车速的合理选择,是影响弯道行车安全的关键.为此,针对车辆在弯道行驶过程中因超速导致的侧滑、侧翻等侧向失稳事故,通过建立车辆转向行驶动力学模型,结合道路环境信息,在分析车辆转向时载荷横向偏移、悬架变形等基础之上,对传统模型进行改进,建立精度更高的弯道安全车速计算模型.并采用车辆动力学仿真软件CarSim和TruckSim进行不同工况下的仿真试验验证.运用正交试验方法对试验结果进行极差和方差分析,获取弯道安全车速对7种主要影响因素的敏感度.结果表明,该模型所得的安全车速值,与车辆侧向失稳时的临界车速值之间的平均误差为1.55%;相比于其他因素,弯道半径和路面附着系数对安全车速的影响最为显著;当路面附着系数达到特定值时,模型考虑了车辆的侧翻危险,使其计算得到的弯道安全车速呈现饱和现象.   相似文献   

16.
汽车电动助力转向(EPS)系统是根据车辆转向助力控制信号和执行端响应驾驶转向请求,实时计算车辆在各种行驶路况下的最佳转向助力参数的控制系统。基于车辆功能安全标准开展 EPS 系统的功能安全开发,可以降低 EPS 系统本身的故障率,提高车辆行驶的稳定性和安全性。提出了一种针对某商用车 EPS 系统的功能安全设计方法,并通过故障注入测试,验证了该设计方法的正确性和有效性。结果表明:按照车辆功能安全标准开发的 EPS 系 统可以有效识别和规避因系统性失效而导致的 EPS 异常现象,提高车辆行驶横向稳定性。所提出的设计方法可为其他车型的 EPS 系统功能安全设计及验证提供参考。  相似文献   

17.
为多域车辆的陆地行驶,设计了轮边电机驱动系统,构建了基于轮边驱动系统的车辆模型,并对驱动控制方法进行了研究.在转向动力学理论分析基础上,在ADAMS中建立了多体动力学模型;提出了车辆驱动与转向的控制策略,在Matlab/Simulink环境建立了控制模型,运用联合仿真方法对车辆在直线加速、转向和制动等典型工况下的行驶性能进行仿真验证.结果表明车辆的主要性能符合预期目标,驱动控制策略有效.  相似文献   

18.
为提高智能车辆弯道换道的安全性能,对其换道轨迹跟踪控制进行了研究。考虑到纵向速度、横向速度及横摆角速度对换道过程的影响,建立了非完整约束条件下车辆的运动学和动力学模型。基于积分反演方法设计了外环车辆位姿控制器,将换道轨迹跟踪问题转换为在任意初始误差下跟踪参考位姿问题,基于非线性积分滑模控制方法设计了内环的动力学控制器,实现了对车辆运行速度的跟踪,分析了该控制系统的稳定性和收敛性。仿真结果表明,所建立的控制系统可保证跟踪误差全局一致有界收敛,具有较快的收敛性和对时变参数不确定性的鲁棒性。  相似文献   

19.
基于多点序列预瞄的自动驾驶汽车路径跟踪算法研究   总被引:1,自引:0,他引:1  
针对自动驾驶汽车自主行驶问题,提出了一种基于预瞄信息的路径跟踪算法。以GPS轨迹点序列作为目标路径,建立车辆—路径相对运动关系模型,使用实时差分GPS数据确定车辆位置。通过预瞄点序列,计算路径的预瞄偏差角和路径弯曲度。根据路径弯曲度确定行驶速度,实现纵向控制;通过Pure Pursuit算法将预瞄偏差角转换成前轮转角的控制量,实现横向控制。试验结果表明,提出的路径跟踪方法在纵向、横向控制和跟踪平稳性方面都具有良好的效果。  相似文献   

20.
无人驾驶车辆是现在汽车工业发展的趋势,在以往的无人驾驶研究中多通过模糊控制、PID控制、滑模控制等控制策略来保证车辆的正常行驶。文章通过车辆行驶前方的障碍物的速度变化、前后车车距等因素来设计了一种基于逻辑切换控制的车辆纵向控制方法,利用Simulink进行逻辑控制的模型搭建,并进行模拟仿真,验证在前后车处于不同的运动状态时后车所进行的状态切换与动作执行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号