共查询到13条相似文献,搜索用时 0 毫秒
1.
Late-Quaternary changes in productivity of the Southern Ocean 总被引:1,自引:0,他引:1
R.F. Anderson N. Kumar R.A. Mortlock P.N. Froelich P. Kubik B. Dittrich-Hannen M. Suter 《Journal of Marine Systems》1998,17(1-4)
Paleoceanographic records based on new proxies of export production have been constructed for the South Atlantic sector of the Southern Ocean. A radionuclide-ratio proxy of particle flux (10Be/230Th) and the accumulation rate of authigenic uranium, which responds to the flux of organic carbon to the sea bed, both indicate a dramatic increase, compared to the present, in the export production of the Subantarctic zone (approximately the region between the present-day positions of the Subtropical Convergence and the Antarctic Polar Front) during glacial periods. If the South Atlantic is representative of the entire Southern Ocean, then export production in the Southern Ocean during the Last Glacial Maximum was substantially greater than at present. Previous studies, focusing on the burial of biogenic opal, failed to recognize the glacial increase in export production of the Southern Ocean because of a strong non-linearity between accumulation rates of opal and of organic carbon. 相似文献
2.
During the late austral summer of 1994, Antarctic waters were characterized by low phytoplankton biomass. Along the 62°E meridian transect, between 49°S and 67°S, chlorophyll (Chl.) a concentration in the upper 150 m was on average 0.2 mg m−3. However, in the Seasonal Ice Zone (SIZ) chlorophyll a concentrations were higher, with a characteristic deep chlorophyll maximum. The highest value (0.6 mg Chl. a m−3) was measured at the Antarctic Divergence, 64°S, corresponding to the depth of the temperature minimum (100 m). This deep biomass maximum decreased from South to North, disappeared in the Permanently Open Ocean Zone (POOZ) and reappeared with less vigour in the vicinity of the Polar Front Zone (PFZ). In the SIZ, the upper mixed layer was shallow, biomass was higher and the >10 μm fraction was predominant. In this zone the >10 μm, 2–10 μm and <2 μm size fractions represented on the average 46%, 25.1% and 28.9% of the total integrated Chl. a stock in the upper 100 m, respectively. The phytoplankton assemblage was diverse, mainly composed of large diatoms and dinoflagellate cells which contributed 42.7% and 33.1% of the autotrophic carbon biomass, respectively. Moving northwards, in parallel with the decrease in biomass, the biomass of autotrophic pico- and nanoflagellates (mainly Cryptophytes) increased steadily. In the POOZ, the picoplanktonic size fraction contributed 47.4% of the total integrated Chl. a stock. A phytoplankton community structure with low biomass and picoplankton-dominated assemblage in the POOZ contrasted with the relatively rich, diverse and diatom-dominated assemblage in the SIZ. These differences reflect the spatial and temporal variations prevailing in the Southern Ocean pelagic ecosystem. 相似文献
3.
P. Pondaven C. Fravalo D. Ruiz-Pino P. Trguer B. Quguiner C. Jeandel 《Journal of Marine Systems》1998,17(1-4)
A coupled 1D physical–biogeochemical model has been built to simulate the cycles of silicon and of nitrogen in the Indian sector of the Permanently Open Ocean Zone of the Southern Ocean. Based on a simplified trophic network, that includes two size classes of phytoplankton and of zooplankton, and a microbial loop, it has been calibrated by reference to surface physical, chemical and biological data sets collected at the KERFIX time-series station (50°40′S–68°25′E). The model correctly reproduces the high nutrient low chlorophyll features typical of the studied area. In a region where the spring–summer mixed layer depth is usually deeper than 60 m, the maximum of chlorophyll never exceeds 1.5 mg m−3, and the annual primary production is only 68 g C m−2 year−1. In the surface layer nitrate is never exhausted (range 27–23.5 mmoles m−3) while silicic acid shows strong seasonal variations (range 5–20 mmoles m−3). On an annual basis 71% of the primary production sustained by nanophytoplankton is grazed by microzooplankton. Compared to North Atlantic, siliceous microphytoplankton is mainly prevented from blooming because of an unfavourable spring–summer light-mixing regime. Silicic acid limitation (high half saturation constant for Si uptake: 8 mmoles m−3) also plays a major role on diatom growth. Mesozooplankton grazing pressure excerpts its influence especially in late spring. The model illustrates the efficiency of the silica pump in the Southern Ocean: up to 63% of the biogenic silica that has been synthetized in the photic layer is exported towards the deep ocean, while only 11% of the particulate organic nitrogen escapes recycling in the surface layer. 相似文献
4.
The Southern Ocean is an extreme environment, where waters are permanently cold, a seasonal ice cover extends over large areas, and the solar energy available for photosynthesis is severely restricted, either by vertical mixing to considerable depths or, especially south of the Antarctic Circle, by prolonged seasonal periods of low or no irradiance. Such conditions would normally lead to low productivity and a water column dominated by recycling processes involving microbial components of pelagic communities but this does not seem to be the case in the Southern Ocean, where there is efficient export to large apex predators and deep waters. This paper investigates the role of large microphagous zooplankton (salps, krill, and some large copepods) in the partitioning of biogenic carbon among the pools of short- and long-lived organic carbon and sequestered biogenic carbon. Large microphagous zooplankton are able to ingest microbial-sized particles and thus repackage small, non-sinking particles into both metazoan biomass and large, rapidly sinking faeces. Given the wide spatio-temporal extent of microbial trophic pathways in the Southern Ocean, large zooplankton that are omnivorous or able to ingest small food particles have a competitive advantage over herbivorous zooplankton. Krill efficiently transfer carbon to a wide array of apex predators and their faecal pellets are exported to depth during occasional brief sedimentation episodes in spring time. Salps may be a significant link towards some fish (directly) and other apex predators (indirectly) and, at some locations (especially in offshore waters) and time, they may account for most of the downward flux of biogenic carbon. Large copepods are a trophic link towards fish and at least one whale species, and their grazing activity generally impedes the export of organic particles to depth. As a result, biogenic carbon is channelled mainly towards apex predators and episodically into the deep ocean. Without these original interactions, Antarctic waters might well be dominated by microbial components and recycling processes instead of active export from the generally small primary producers towards large apex predators. 相似文献
5.
Angus Atkinson 《Journal of Marine Systems》1998,15(1-4)
Twelve epipelagic copepod species were reviewed to compare their adaptations to the short primary production season and low temperatures which characterise the Southern Ocean. The species show a spectrum of adaptations, but three broad life cycle strategies were defined: (1) herbivorous in summer, a short reproductive period and winter diapause at depth (Calanoides acutus and possibly Ctenocalanus citer); (2) predominantly omnivorous/detritivorous diet, an extended period of feeding, growth and reproduction and less reliance on diapause at depth (Metridia gerlachei, Calanus propinquus, Calanus simillimus, Oithona similis, Microcalanus pygmaeus, and possibly Oncaea curvata and Oithona frigida); (3) overwintering and feeding within sea ice as early nauplii or copepodids (Stephos longipes and Paralabidocera antarctica). The large species Rhincalanus gigas appears to be intermediate between strategies (1) and (2). Contrasting species from groups (1) and (2), namely C. acutus and O. similis, were selected for more detailed comparison. For C. acutus, maximum (probably food saturated) feeding and egg production rates are well below equivalent values for Calanus spp. at lower latitudes. Likewise, summer growth and moulting rates are slower, and the growth season of this herbivore is only 2–4 months. Therefore, both the low summer temperatures and short primary production season seem to dictate a long (1 year) life cycle for C. acutus. A collation of data on O. similis revealed that its abundance increases about tenfold from the Antarctic shelf northwards to the Polar Frontal Zone, where abundances are similar to those in temperate and tropical shelf seas. In contrast to C. acutus, O. similis appears to remain in the epipelagic and reproduce there year-round, although the food sources which sustain this are still uncertain. 相似文献
6.
A major objective of the Palmer Long Term Ecological Research (Palmer LTER) project is to obtain a comprehensive understanding of the various components of the Antarctic marine ecosystem. Phytoplankton production plays a key role in this so-called high nutrient, low chlorophyll environment, and factors that regulate production include those that control cell growth (light, temperature, and nutrients) and those that control cell accumulation rate and hence population growth (water column stability, grazing, and sinking). Sea ice mediates several of these factors and frequently conditions the water column for a spring bloom which is characterized by a pulse of production restricted in both time and space. This study models the spatial and temporal variability of primary production within the Palmer LTER area west of the Antarctic Peninsula and discusses this production in the context of historical data for the Southern Ocean. Primary production for the Southern Ocean and the Palmer LTER area have been computed using both light-pigment production models [Smith, R.C., Bidigare, R.R., Prézelin, B.B., Baker, K.S., Brooks, J.M., 1987. Optical characterization of primary productivity across a coastal front. Mar. Biol. (96), 575–591; Bidigare, R.R., Smith, R.C., Baker, K.S., Marra, J., 1987. Oceanic primary production estimates from measurements of spectral irradiance and pigment concentrations. Global Biogeochem. Cycles (1), 171–186; Morel, A., Berthon, J.F., 1989. Surface pigments, algal biomass profiles and potential production of the euphotic layer—relationships reinvestigated in view of remote-sensing applications. Limnol. Oceanogr. (34), 1545–1562] and an ice edge production model [Nelson, D.M., Smith, W.O., 1986. Phytoplankton bloom dynamics of the western Ross Sea ice edge: II. Mesoscale cycling of nitrogen and silicon. Deep-Sea Res. (33), 1389–1412; Wilson, D.L., Smith, W.O., Nelson, D.M., 1986. Phytoplankton bloom dynamics of the Western Ross Sea ice edge: I. primary productivity and species-specific production. Deep-Sea Res., 33, 1375–1387; Smith, W.O., Nelson, D.M., 1986. Importance of ice edge phytoplankton production in the Southern Ocean. BioScience (36), 251–257]. Chlorophyll concentrations, total photosynthetically available radiation (PAR) and sea ice concentrations were derived from satellite data. These same parameters, in addition to hydrodynamic conditions, have also been determined from shipboard and Palmer Station observations during the LTER program. Model results are compared, sensitivity studies evaluated, and productivity of the Palmer LTER region is discussed in terms of its space time distribution, seasonal and interannual variability, and overall contribution to the marine ecology of the Southern Ocean. 相似文献
7.
The Prince Edward Islands pelagic ecosystem, south Indian Ocean: a review of achievements, 1976–1990
This review summarizes the main research findings of the multi-year oceanographic and biological studies conducted in the vicinity of the Prince Edward Archipelago during the period 1976 to 1990. The Prince Edward Islands represent a flow-through system on the mainstream of the Antarctic Circumpolar Current. Although there are no taxonomic differences between the pelagic communities of the upstream, inter-island and downstream regions, these mesoscale subsystems may operate differently. The mesoscale oceanographic and biological processes appear to be affected by the position of the Subantarctic Front (SAF) in the vicinity of the islands. Both the rich benthic community, which is supported by the local enhancement of primary production, and the strong advection of zooplankton/micronekton from the upstream region provide the food resources necessary for the survival of the huge community of land-based predators present on the islands. Collectively this is termed the ‘life-support system'. Future studies should concentrate on the meridional shifts in the position of the SAF and its influence on background productivity upstream and downstream of the Prince Edward Archipelago. 相似文献
8.
L. Goeyens M. Semeneh M.E.M. Baumann M. Elskens D. Shopova F. Dehairs 《Journal of Marine Systems》1998,17(1-4)
The separation in Southern Ocean provinces of silicate excess at nitrate exhaustion and of nitrate excess at silicate exhaustion was already introduced by Kamykowski and Zentara (Kamykowski, D., Zentara, S.J., 1985. Nitrate and silicic acid in the world ocean: patterns and processes. Mar. Ecol. Prog. Ser. 26, 47–59; and Kamykowski, D., Zentara, S.J., 1989. Circumpolar plant nutrient covariation in the Southern Ocean: patterns and processes. Mar. Ecol. Prog. Ser. 58, 101–111) and our investigations of the silicate to nitrate uptake ratios confirm the earlier distinction. Oligotrophic antarctic waters mainly exhibit proportionally higher silicate removal what induces a potential for nitrate excess. The nitrogen uptake regime of such areas is characterised by low absolute as well as specific nitrate uptake rates throughout. Maximal values did not exceed 0.15 μM d−1 and 0.005 h−1, respectively. Corresponding f-ratios ranged from 0.39 to 0.86. This scenario contrasts strikingly to the more fertile ice edge areas. They showed a drastic but short vernal increase in nitrate uptake. Absolute uptake rates reached a maximum value of 2.18 μM d−1 whereas the maximal specific uptake rate was 0.063 h−1. In addition to an optimal physical environment for bloom development, accumulation of ammonium stimulated nitrate uptake in a direct or indirect way. Since ammonium build-up in surface waters traces enhanced remineralisation, release of other essential compounds during degradation of organic matter might have been the main trigger. This peak nitrate utilisation during early spring led to the observed potential for silicate excess. With increasing seasonal maturity the nitrate uptake became inhibited by the presence of enhanced ammonium availability (up to 8% of the inorganic nitrogen pool), however, and after a short period of intensive nitrate consumption the uptake rates drop to very low levels, which are comparable to the ones observed in the area of nitrate excess at silicate exhaustion. 相似文献
9.
Igor P. Semiletov Irina I. Pipko Irina Repina Natalia E. Shakhova 《Journal of Marine Systems》2007,66(1-4):204
Climatic changes in the Northern Hemisphere have led to remarkable environmental changes in the Arctic Ocean, which is surrounded by permafrost. These changes include significant shrinking of sea-ice cover in summer, increased time between sea-ice break-up and freeze-up, and Arctic surface water freshening and warming associated with melting sea-ice, thawing permafrost, and increased runoff. These changes are commonly attributed to the greenhouse effect resulting from increased atmospheric carbon dioxide (CO2) concentration and other non-CO2 radiatively active gases (methane, nitrous oxide). The greenhouse effect should be most pronounced in the Arctic where the largest air CO2 concentrations and winter–summer variations in the world for a clean background environment were detected. However, the air–land–shelf interaction in the Arctic has a substantial impact on the composition of the overlying atmosphere; as the permafrost thaws, a significant amount of old terrestrial carbon becomes available for biogeochemical cycling and oxidation to CO2. The Arctic Ocean's role in determining regional CO2 balance has been ignored, because of its small size (only 4% of the world ocean area) and because its continuous sea-ice cover is considered to impede gaseous exchange with the atmosphere so efficiently that no global climate models include CO2 exchange over sea-ice. In this paper we show that: (1) the Arctic shelf seas (the Laptev and East-Siberian seas) may become a strong source of atmospheric CO2 because of oxidation of bio-available eroded terrestrial carbon and river transport; (2) the Chukchi Sea shelf exhibits the strong uptake of atmospheric CO2; (3) the sea-ice melt ponds and open brine channels form an important spring/summer air CO2 sink that also must be included in any Arctic regional CO2 budget. Both the direction and amount of CO2 transfer between air and sea during open water season may be different from transfer during freezing and thawing, or during winter when CO2 accumulates beneath Arctic sea-ice; (4) direct measurements beneath the sea ice gave two initial results. First, a drastic pCO2 decrease from 410 μatm to 288 μatm, which was recorded in February–March beneath the fast ice near Barrow using the SAMI-CO2 sensor, may reflect increased photosynthetic activity beneath sea-ice just after polar sunrise. Second, new measurements made in summer 2005 beneath the sea ice in the Central Basin show relatively high values of pCO2 ranging between 425 μatm and 475 μatm, values, which are larger than the mean atmospheric value in the Arctic in summertime. The sources of those high values are supposed to be: high rates of bacterial respiration, import of the Upper Halocline Water (UHW) from the Chukchi Sea (CS) where values of pCO2 range between 400 and 600 μatm, a contribution from the Lena river plume, or any combination of these sources. 相似文献
10.
The time-series of remote-sensed surface chlorophyll concentration measured by SeaWiFS radiometer from September 1997 to December 2001 and the relevant hydrological and meteorological factors (remote-sensed sea surface temperature, atmospheric precipitation, air temperature and wind stress) in Santa Monica Bay and adjacent waters off southern California were analyzed using wavelet and cross-correlation statistical methods. All parameters exhibited evident seasonal patterns of variation. Wavelet analysis revealed salient long-term variations most evident in air temperature during El Niño 1997–1998 and in wind stress during La Niña 1998–1999. Short-period (<100 days) variations of remote-sensed chlorophyll biomass were mostly typical to spring seasons. Chlorophyll biomass was significantly correlated with air temperature and wind stress: an increase of chlorophyll biomass followed with 5–6-day time lag an increase of wind stress accompanied by a simultaneous decrease of air temperature. The mechanism of these variations was an intensification of phytoplankton growth resulting from the mixing of water column by wind stress and entrainment of nutrients into the euphotic layer. 相似文献
11.
Surface and box-cored sediments were collected along the Gaoping (formerly spelled Kaoping) Estuary–Canyon system and analyzed for As and Hg contents and speciation, 210Pb-based sedimentation rates and various geochemical parameters to elucidate the mechanisms that control natural and anthropogenic inputs of As and Hg from the Gaoping (Kaoping) River (KPR). The contents of As and Hg in surface sediments ranged from 1.84 to 20.7 mg kg− 1 and from 0.07 to 2.15 mg kg− 1, respectively, in the estuary and canyon. The concentrations generally decreased from the lower river toward the mixing boundary and then increased toward the estuarine mouth, followed by a slight variation in the canyon. Both As and Hg concentrations correlated strongly with clay, total organic carbon (TOC), Al, Fe and Mn contents in estuarine sediments but not necessary the same cases for canyon surface sediments. The factor analysis of surface sediments shows that the first two factors, which account for 75.6% of the variance, may represent major roles of carriers (clay, Al and Fe–Mn oxides) and TOC in controlling As and Hg distributions, respectively. Accordingly, the spatial patterns of the enrichments of As (1.9–16.2) and Hg (1.8–30.8) with reference to the crust levels follow the individual element's distribution patterns, likely because of deposition variability following inputs from the river. The contents of mobile As and Hg correlated substantially with the contents of both metals that were extracted with 0.1 M HCl. In addition to the major pool in the residual fraction (65–87%), As was relatively abundant in Fe–Mn oxides/hydroxides, whereas Hg was abundant in the organic/sulfide fraction. The deposition and accumulation rates of As and Hg in the canyon clearly decreased as the depth of water increased. The depth distributions of both metals are likely controlled primarily by TOC and Fe–Mn oxides associated factors followed by a contribution from anthropogenic pollution. The metal pollution appears to have increased substantially around 1970, following the economic boom in Taiwan, suggesting that modern sediments in the Gaoping (Kaoping) Canyon were derived from the Gaoping (Kaoping) River (KPR). 相似文献
12.
David C.M. Miller Coleen L. Moloney Carl D. van der Lingen Christophe Lett Christian Mullon John G. Field 《Journal of Marine Systems》2006,61(3-4):212
A particle-tracking individual-based model (IBM) coupled with a 3-D hydrodynamic model was used to investigate how spatial variability in spawning and nursery grounds may influence transport and retention of sardine (Sardinops sagax) eggs and larvae in the southern Benguela ecosystem. A temperature-dependent Bělehrádek development model based on laboratory growth data was used to determine the duration of one egg and two larval stages. Successful transport/retention depended on each particle's stage of development rather than its age. Results show that recruitment could occur in two distinct nursery areas on the west and south coasts of South Africa. Three viable recruitment ‘systems’ were identified: two are retention-based (spawned and retained on the west coast (WC–WC) or the south coast (SC–SC)) and one is transport-based (spawned on the south coast and transported to the west coast (SC–WC)). In the WC–WC system, the vertical distribution of eggs influenced retention; at intermediate depths of spawning (25–50 m) eggs avoided both offshore Ekman drift and deep cold water. In the SC–SC system, the area of spawning was important; > 50% of eggs from the eastern Agulhas Bank (EAB) were retained in the south coast nursery grounds, whereas very few eggs were transported there from west of Cape Agulhas. In the SC–WC system, area of spawning was also important; 40% of the eggs spawned on the western Agulhas Bank (WAB) were transported to the west coast nursery ground. Sardine life history strategy could be divided between two main systems: the west coast system (spawning on the WAB and WC, and recruiting to the WC) and the Agulhas Bank system (spawning on the central and eastern Agulhas Bank, and recruiting to the SC). 相似文献
13.
Anne-Sophie Archambeau Catherine Pierre Alain Poisson Bernard Schauer 《Journal of Marine Systems》1998,17(1-4)
This study presents oceanic distributions of stable isotopes (δ18O of water and δ13C of ΣCO2) and CFC-12 from samples collected during the CIVA1 cruise (February/March 1993), across the Southern Ocean, along a meridian section at 30°E, from South Africa (44°S) to Antarctica (70°S). The isotopic measurements show important variations between the subantarctic surface waters with low δ18O–high δ13C values and the antarctic surface waters with very low δ18O–low δ13C values. The surface distributions of δ13C values follow the major frontal oceanic structures; the vertical distribution shows the progressive upwelling from the subantarctic zone to the antarctic divergence of 13C-depleted CO2 derived from remineralization of organic matter. Along the Antarctic continental shelf, between 2500 and 4000 m, a core of water with δ18O values close to −0.1‰ is associated with a relative maximum in CFC-12 concentration, although this core is not detected by its temperature and salinity parameters. This water mass, which corresponds to recently formed deep water, may originate from the eastward extension of the Weddell gyre or from bottom waters coming from the East and formed near Prydz Bay. 相似文献