首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张力  吴俊刚  徐中明  苏伟  黄琪 《汽车工程》2006,28(3):308-310,315
在摩托车发动机单顶置凸轮轴配气正时机构的结构形式基础上,研制一种可切换凸轮型线的VVT机构,具有2套可切换的进气配气正时参数。对VVT机构调整摩托车发动机热力循环过程和运行参数进行分析。结合JH125摩托车发动机所进行的研究表明:该机构结构简单、对原机结构改动小、成本低,能够实现配气相位的可变控制,有效改善发动机性能,可广泛应用于中小排量摩托车发动机。  相似文献   

2.
参照变换凸轮型线VVT机构的原理,在JH125摩托车发动机单顶置凸轮轴结构基础上,研制了适用于中小排量摩托车发动机可切换凸轮型线的VVT机构。该机构结构紧凑,控制精度及可靠性高,与传统的可变配气正时机构的自动控制装置相比,由一个外接式油泵代替了复杂油路控制系统,在整个工况范围内设置了2套可切换的进气正时参数,可满足中小排量摩托车发动机结构空间紧凑布置的要求,有效降低了制造成本。  相似文献   

3.
基于发动机燃油经济性升级需求,将传统的Otto循环发动机改为阿特金森(Atkinson)循环发动机,其中,配气机构的改进是完成循环改型的关键。对某汽油机配气机构建立模型,并进行运动学和动力学计算分析,进而对凸轮型线进行优化设计,对配气正时进行再设计研究。利用进排气凸轮轴的双VVT机构,在不同转速和负荷下对改型后的发动机进行了双VVT的优化控制设计。台架试验结果表明,发动机成功地完成了Atkinson循环的转换,最低燃油消耗率由原机的250g/(kW·h)降低到232g/(kW·h),且低油耗区向常用发动机工况移动,验证了配气机构设计方法的正确性和有效性。  相似文献   

4.
根据下置式摩托车发动机配气机构示意图,进行了运动学和配气定时分析,并编制了相应的分析软件。以高次5项式非对称凸轮型线CG150摩托车发动机配气机构为例,进行软件设计分析,不仅输出功率提高了约1 kW左右,而且减小了气门的冲击,降低了振动和噪声。  相似文献   

5.
廖科浩  瘳琴 《摩托车》2009,(4):92-93
采用顶置气门下置凸轮配气方式的发动机简称OHC发动机,目前国内的摩托车普遍采用的是与本田CG125相同的发动机,俗称“CG125”或者“顶杆机”。这种发动机从理论上来说,由于配气机构复杂,有往复动作,所以很容易产生配气噪声,但这只是相对于采用链条配气的发动机来说的,实际上控制好生产工艺和材料,其噪声还是属于良性的。  相似文献   

6.
为满足现代汽车对发动机 ,尤其是轿车发动机高功率、低油耗以及低排放的要求 ,设计了一种新型的直动式液力间隙调节器可变配气相位机构 ,。该机构主要采用了液力间隙调节器 (HLA)和可变配气相位 (VVT)技术。概述了HLA和VVT的意义和应用 ,并详细阐述了该机构的基本结构和工作原理。  相似文献   

7.
君越是上海通用汽车竞争中、高级市场的全新车型,此次在中国上市的君越分为3款车型。豪华版和精英版分别配备全新2.4升D.VVT全铝4缸发动机,最大功率达到了168马力。而旗舰版则配备了3.O升的V6发动机,该发动机采用DoD(Displacement on Demand)可变排量控制技术。可根据需要控制发动机排量,在3缸和6缸间主动切换,提高了燃油经济性。  相似文献   

8.
非对称式N次谐波顶置凸轮型线设计   总被引:1,自引:1,他引:1  
给出OHC多气门配气机构常用的线型不对称的一种凸轮设计方法。采用调整系统矩阵的方法,设计出型线不对称的N次谐波凸轮,此设计方法实现了凸轮最高点处加速度保持连续和型线不对称的设计要求,改善了气门的综合性能,提高了发动机的效率。  相似文献   

9.
利用TYCON软件设计出来的摩托车发动机配气凸轮,能满足配气凸轮仿形设计的实际要求,是一种有效、可靠、准确度高的设计方法,为配气机构的设计和优化奠定了良好基础,使摩托车发动机具有更好的外特性,不仅功率、转矩得到了提升,还可减小热机噪声.  相似文献   

10.
对日本1998年推出的6个典型排量,近170款摩托车发动机进行了统计分析。通过对冲程数,冷却方式,配气机构,气门结构及最大功率,最大转矩,最后功率状态下体积排量功能的比较比叫结出每种排量的基本结构及最佳结构特点,性能水平状况,探讨了发展趋势。  相似文献   

11.
目前,我国出口的中小排量摩托车,由于受到部分国家法规的限制,需要加装安全限速装置,对摩托车最高速度进行控制,若采用小排量低功率发动机限制车速,加速性及发动机整体性能用户又无法接受。  相似文献   

12.
’98新款海王摩托车是江苏林海动力机械集团公司经过近两年的精心设计、制造的精品摩托车,其经济性、动力性、舒适性、可靠性达到了国内领先水平。’98新款海王配备了四冲程强制OHC卧式发动机,采用顶置凸轮配气方式,齿型链传动,配气相位精确,噪音低。润滑系统采用压力与飞溅相结  相似文献   

13.
正专家点评:这款发动机的亮点包含了双VVT、VVT-L电控配气系统,其他亮点有废气涡轮增压、自动启停、变排量机油泵、减摩技术都可以看到。略感不足之处就是指南者的起步稍显迟缓,离合器的结合时间稍长,同时前段动力有点保守。广菲克旗下的这款1.4T发动机可以说非常有特点,它应用了一套特殊的进气机构,另外采用了时下非常主流的节能减排技术,同时保证了充足的动力水平。该发动机为1.4升直列四缸废气涡轮增  相似文献   

14.
为解决CVVL发动机在搭载车辆后出现的加速抖动甚至熄火和减速转速上冲问题,对发动机的动态工况控制和优化方法进行了研究。发动机测试结果表明,造成上述问题的根本原因是CVVL、节气门和可变气门正时(variable valve timing,VVT)三者不同的动态控制特性,发动机进气动态特性是各个进气控制机构控制效果的动态叠加。加油门时,CVVL动态响应速度快,而VVT切换动作延迟,进气量突然上冲,然后下降,产生进气波动,从而造成发动机转速抖动。减油门时,当CVVL动作比VVT动作慢,在VVT切换时,进气量首先上升,然后随CVVL升程下降而下降,造成发动机转速抖动,但减油门时问题一般没有加油门时明显。通过引入CVVL和VVT响应速度滤波时间,并采用CVVL,VVT和节气门开度协同控制,优化CVVL和VVT在加油门和减油门时控制效果,上述问题得到了有效解决,实现了发动机动态工况平顺、快速的切换。  相似文献   

15.
在1台直喷增压汽油机上应用可变进气凸轮技术,研究了不同凸轮型线对发动机部分负荷工况经济性的影响.研究所用的可变凸轮由长行程凸轮和短行程凸轮组成,长、短行程凸轮切换通过电磁阀控制实现.研究结果表明,短行程凸轮通过进气门早关实现米勒循环,进气压力提升后有利于降低泵气损失和缸内残余废气系数.短行程凸轮应用在不同负荷下降低燃油...  相似文献   

16.
486Q、491Q型发动机配套于万山牌WS6430型小客车和金杯牌SY622型小客车。其配气机构是采用现代高速内燃机较成熟的先进机构。实现气门无间隙及配气系统零件尺寸变化的自动调解补偿。系统工作时,具有配气正时准确、振动小、噪音低、磨损小与寿命长等优点。提高了发动机热效率,降低排放污染。一、配气机构的组成该型机的配气机构(见图1),图例:由凸轮3、液压挺柱4、挺杆5、摇臂6、摇臂轴7、气门弹簧及旋转机构1、气门2等组成。凸轮轴通过链轮由主轴驱动。由于采用液压  相似文献   

17.
国产豪迈125型摩托车发动机(GY6)配气系统中采用了逆回转减压机构,该机构目前在摩托车发动机中应用相对较少,加之该机构功能、结构较为特殊,人们往往对其缺乏了解,这就给维修和安装该类发动机带来许多不便.为此本文对该机构的结构、功能及其工作原理作一较为详细的介绍,并针对由于该机构的设置,在调整气门间隙的操作中易出现的问题进行分析和探讨.  相似文献   

18.
EQ 368汽油机配气机构的设计开发   总被引:2,自引:0,他引:2  
为给东风汽车公司AF微型轿车及微型系列载货汽车提供适配动力,开展了EQ368发动机的开发研制工作。介绍了EQ368汽油机配气机构设计构思及总体布置方案,凸轮轴、气门弹簧等主要零件的结构特点,配气相位的设计,凸轮型线的设计。发动机整机性能、可靠性试验结果表明,该机构的设计达到了预期的效果。  相似文献   

19.
某高速汽油机改LNG发动机动力性下降问题研究   总被引:3,自引:0,他引:3  
针对直接将汽油机改为LNG发动机导致的动力性下降问题,通过GT-Power与试验标定相结合的方法,提出了一种基于单因素法的高速LNG发动机配气相位优化方法:在降低泵气损失、减少缸内废气、提高充气效率的前提下,减小气门重叠角;针对优化后的配气相位,优化设计凸轮型线;同时根据LNG燃烧特性,在控制最高燃烧温度和压力的前提下,适当将点火提前角增大,合理组织燃烧,使燃烧更加及时完全,从而提高燃烧效率。结果表明,优化后的凸轮型线满足配气机构运动学动力学要求,高速LNG发动机最大功率较之优化前提高约7.9%,最低燃料消耗率降低约5.8%,此方法可以在一定程度上解决LNG发动机的动力性下降问题。  相似文献   

20.
与固定配气正时相比,智能可变配气正时系统VVT—i可以在发动机整个工作范围内的转速和负荷下提供最佳进、排气门开启与关闭时刻,从而较好地满足发动机各工况下的动力性、经济性及废气排放要求。文中介绍了丰田卡罗拉汽车双VVT—i系统的结构、原理及故障诊断与排除方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号