首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
随着智能网联汽车的发展,越来越多的学者投身于L4级以上的稳定的自动驾驶算法研究中来。自动泊车系统作为智能网联汽车的一项重要功能,能够在有效提升驾驶体验的同时,降低由于复杂地段的泊车困难带来的交通事故和经济损失,因此自动泊车在学术界和工业界掀起了研究热潮。传统的自动泊车系统中对于车位的感知依赖于超声波雷达,并且对车位空间结构有诸多限制。由于复杂的视觉环境和环视图像上停车位的不完整显示,基于视觉的停车位检测是一项重大挑战。本文提出了一种基于卷积神经网络(CNN)的车位检测算法,设计适用于车载环视图像的多重沙漏网络,并引入一种策略选择最佳感受野,从而联合检测停车位的角和线特征。所提出的方法达到了较高的精度和召回率,在搭载GPU的嵌入式移动终端可以达到30 FPS的实时性和较高的精准度。  相似文献   

2.
基于倾向流和深度学习的机场运动目标检测   总被引:1,自引:0,他引:1       下载免费PDF全文
针对当前基于视频图像的场面监视目标检测方法存在定位误差较大,识别准确率低等问题,建立一种结合目标运动信息的机场场面运动目标检测方法:利用倾向流法提取出运动目标在图像中的候选区域,对候选区域执行点池化操作以确定区域建议的边界,采用Inception结构构建一个浅层卷积神经网络,并使用该网络对区域建议中的航空器、车辆和人员进行识别.结合国内机场的监视视频,构建了一个包含4 938张图片的机场目标数据集,用于算法的训练和测试.结果 表明,运动目标提取的准确率达到94%以上,运动目标识别的Top-1准确率达到了97.23%,运动目标平均准确率达到86.23%.与3种深度学习目标检测算法相比,运动目标检测精度平均提升了39%.  相似文献   

3.
为了提高交通目标检测的实时性和准确性,针对交通目标检测过程中普遍存在的背景复杂、光线变化、物体遮挡等干扰问题,以及基于深度学习的目标检测算法在进行区域选择时滑动窗口遍历搜索耗时的问题,提出一种基于时空兴趣点(STIP)的交通多目标感兴趣区域快速检测算法。像素级时空兴趣点检测在处理目标遮挡时具有较好的鲁棒性,利用这一特点,首先在传统兴趣点检测算法的基础上加入背景点抑制和时空点约束,以减少无效兴趣点对有效兴趣点检测带来的干扰。通过改进均值漂移算法,使得聚类中心数量随目标数目的变化而改变。然后对被检测出的多目标附近的候选兴趣点分别进行聚类,获取各个目标聚类中心位置信息。根据聚类中心点与筛选后的目标兴趣点之间的相对位置关系进行特定组合获得感兴趣区域。在这些感兴趣区域上使用选择性搜索算法生成1 000~2 000个候选区域,并将这些候选区域放入训练好的深度卷积神经网络模型中进行特征提取。最后将特征提取结果送入支持向量机中进行目标种类判别并使用回归器精细修正目标识别框的位置。研究结果表明:通过对候选区域进行预处理,送入模型中的候选区域数量减少了82%,对应算法整体运行时间减少了74%,能够满足智能交通监控的实际需求。  相似文献   

4.
针对在复杂场景下,背景区域干扰特征过多、被检测目标运动速度快等导致的动态目标检测率低的问题,研究了基于深度学习的多角度车辆动态检测方法,将带有微型神经网络的卷积神经网络(MLP-CNN)用于传统算法的改进.使用快速候选区域提取算法提取图像中可能存在车辆的区域,之后使用深层卷积神经网络(CNN)提取候选区域的特征,并在卷积层中增加微型神经网络(MLP)对每层的特征进一步综合抽象,最后使用支持向量机(SVM)区分目标和背景的CNN特征.实验表明,该方法能够处理高复杂度背景条件下,部分遮挡、运动速度快的目标特征检测,识别率高达87.9%,耗时仅需225ms,比常用方法效率有大幅度提升.  相似文献   

5.
车辆目标检测是自动驾驶环境感知的重要组成部分。近年来随着深度学习在目标识别领域取得重大突破,基于深度学习的车辆目标检测算法逐渐成为该领域的研究热点。论文对当前主流的两阶段车辆目标检测算法和单阶段车辆目标检测算法进行简要介绍,分析了其中几种具有代表性的卷积神经网络算法的优缺点,最后总结目前车辆目标检测存在的问题以及未来的发展方向。  相似文献   

6.
基于视觉的车辆检测作为辅助驾驶系统的输入,对智能车辆预警和决策起着重要的作用。针对目前传统深度卷积神经网络在基础网络设计和物体检测网络构建的不足,提出一种对经典的深度残差网络进行改进方法,提出带局部连接的残差单元,并以此构建带局部连接的残差网络;同时,提出基于共享参数的多分支网络和双金字塔语义传递网络形式,提升不同语义级别特征融合前的语义级别,以及实现深度融合不同分辨率特征图的语义。经过测试,车辆的检测准确率最高达到95.3%,且具备较高的实时性和环境适应性。  相似文献   

7.
随着人工智能技术的不断发展,无人驾驶技术已经成为当下社会发展的热门,车道线检测是无人驾驶技术的关键一环,但传统的基于视觉的车道线检测方法处理时间较长、过程繁琐、需要人为干预。基于深度学习的车道线检测可大大减少此类问题。文章设计了一个完成双任务的Enet网络,分别解决目标区域分割问题和不同车道区分问题,以实现端到端的检测。与主流车道线检测网络模型deeplab v3和YOLO v3进行对比。实验验证表明,网络模型的最终训练准确率为99.8%,相对于deeplab v3和YOLO v3网络分别提升1.2%和0.8%。  相似文献   

8.
为提高交通参数提取的准确性与实时性,研究了基于多尺度边缘融合和SURF特征匹配的车辆检测与跟踪方法,克服了传统基于边缘特征的车辆检测方法易受噪声、背景干扰的问题,实现车辆准确检测.将车辆检测结果作为跟踪样本建立跟踪样本集合,通过建立匹配点对几何约束消除误匹配特征对,提高跟踪样本与待跟踪视频帧的SURF特征匹配准确度.针对车辆驶入、驶离相机视野,车辆间歇性运动,背景缓慢变化等情况提出跟踪样本更新机制,实现车辆的准确、实时跟踪.实验结果显示,所提算法的车辆检测率为88.3%,检测准确度为90.2%;跟踪精确度为86.4%,跟踪准确度为92.7%;检测时间成本为91.8ms,跟踪速率为52.2fps.检测准确度、跟踪准确度、检测速率、跟踪速率均高于光流法、粒子滤波法和SIFT特征匹配法,表明所提算法能较好地满足实时性应用.  相似文献   

9.
王嘉诚 《专用汽车》2023,(12):95-99
针对疲劳驾驶检测模型需要的实时性与轻量性,在SSD的基础上提出了SSD-MA网络作为人脸部件检测网络。该网络通过替换原SSD主干网络为MobileNetv3,使得模型参数量骤减,加上AFF注意力特征融合了不同尺寸的特征图,进一步提升了对人眼小目标的检测性能,并结合疲劳参数Peclos可以准确地输出被测人员的疲劳状态。经实验验证,SSD-MA在验证集上的mAP值达到了96.9%,较原SSD-300提高了5%,网络整体体积缩减了89%。  相似文献   

10.
基于CNN技术的灰度视频交通图像边缘检测   总被引:2,自引:0,他引:2  
车辆或道路的边缘是灰度视频交通图像的重要特征,文章采用细胞神经网络技术,合理地选择了网络参数,并编制了基于Matlab 5.3平台的程序,将其用于检测灰度交通图像的边缘。经算例与传统的Sobel方法进行比较,证明采用该方法提取交通图像边缘是有效的,实用的,并通过分析推荐了网络参数。  相似文献   

11.
针对日益凸显的船舶值班人员疲劳驾驶问题,为有效预警值班驾驶员的疲劳状态,保障船舶航行安全,研究了基于深度学习的疲劳检测算法。考虑到船舶驾驶台空间大、背景复杂等特点,使用深度可分离卷积改进RetinaFace人脸检测模型,优化模型的检测速度;基于Channel Split和Channel Shuffle思想,结合批量归一化、全局平均池化等技术搭建改进的ShuffleNetV2网络,自动提取图像特征,识别眼睛、嘴巴的开闭状态;根据PERCLOS准则融合眼睛、嘴巴2个特征参数综合判定驾驶员是否疲劳。实验结果表明:改进后RetinaFace模型的检测速度由9.33帧/s提升至22.60帧/s,人脸检测精度和速度均优于多任务卷积神经网络(MTCNN);改进的ShuffleNetV2网络识别眼睛、嘴巴状态的准确率高达99.50%以上;算法在模拟驾驶台环境中识别疲劳状态的精确率达到95.70%,召回率达到96.73%,均高于目前常见的Haar-like+Adaboost以及MTCNN+CNN疲劳检测算法。算法检测每帧图片仅需0.083 s,基本满足实时检测的要求。   相似文献   

12.
提出了基于驾驶员脸部及周围信息的驾驶员状态检测方法。文章通过实车摄像头采集了驾驶员驾驶状态视频数据,利用Dlib和OpenCV库对采集的驾驶员图像进行脸部检测,基于驾驶员脸部数据建立了深度学习数据集,然后基于该数据集设计了一种卷积神经网络模型FaceNet,利用PyTorch深度学习框架在数据集上对模型进行训练,最终得到了有较高准确率的驾驶员状态检测模型,其可识别抽烟、睡觉、左手打电话和右手打电话四种驾驶员状态。  相似文献   

13.
针对自适应巡航控制系统在控制主车跟驰行驶中受前车运动状态的不确定性影响问题,在分析车辆运动特点的基础上,提出一种能够考虑前车运动随机性的跟驰控制策略。搭建驾驶人实车驾驶数据采集平台,招募驾驶人进行实车跟驰道路试验,建立驾驶人真实驾驶数据库。假设车辆未来时刻的加速度决策主要受前方目标车辆运动影响,建立基于双前车跟驰结构的主车纵向控制架构。将驾驶数据库中的驾驶数据分别视作前车和前前车运动变化历程,利用高斯过程算法建立了前车纵向加速度变化随机过程模型,实现对前方目标车运动状态分布的概率性建模。将车辆跟驰问题构建为一定奖励函数下的马尔可夫决策过程,引入深度强化学习研究主车跟驰控制问题。利用近端策略优化算法建立车辆跟驰控制策略,通过与前车运动随机过程模型进行交互式迭代学习,得到具有运动不确定性跟驰环境下的主车纵向控制策略,实现对车辆纵向控制的最优决策。最后基于真实驾驶数据,对控制策略进行测试。研究结果表明:该策略建立了车辆纵向控制与主车和双前车状态之间的映射关系,在迭代学习过程中对前车运动的随机性进行考虑,跟驰控制中不需要对前车运动进行额外的概率预测,能够以较低的计算量实现主车稳定跟随前车行驶。  相似文献   

14.
针对传统的协同式自适应巡航控制的算法响应慢、无法快速准确地对突发危险路况做出反应的问题,设计了基于深度强化学习的协同式自适应巡航控制框架,提出了双经验池和优化评价的深度确定性策略梯度算法.在传统算法基础上新建了2个包含车辆状态信息的经验池(优先价值经验池和撒普列经验池),训练数据样本分别从2个经验池按比例选取;critic评价模块采用多维向量对输出的踏板开度策略精确评价.结果表明,该算法在正常行驶工况和突发危险工况下:平均跟车间距误差分别下降1.8 m和1.5 m,跟车调节时间分别降低30%和25%,可以提升控制的准确性和系统紧急反应能力.  相似文献   

15.
为了提高智能汽车对路面障碍物检测的精度和速度,本文基于YOLO V3深度学习网络模型和迁移学习算法建立路面障碍物检测模型,并对模型的训练和测试结果进行评估.  相似文献   

16.
在现代交通驾驶领域中,随着自动驾驶技术的迅速发展,车道线检测也变得至关重要。基于此,文章提出了一种基于传统图像处理算法的车道线检测方法,该方法利用了传统图像处理算法中的滤波算法、Canny边缘检测算法和Hough直线检测算法作为基本算法模型,采用只对ROI中进行检测的措施来满足对于前方车道线的准确检测。在检测中,使用了OpenCV开源图像处理库来对进行上述方法进行实现。此方法可极大减少对前方车道线检测的外界干扰,在汽车实验场中利用该方法,可以比较准确地检测出车辆前方的车道线,并且该算法在一般机器上能够实现实时级的车道线检测。但是在实验过程中,也发现当前方的障碍物较多的时候,所采用的算法不能很好地检测出车道线,对外界的抗干扰能力比较差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号