首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
基于高速开关阀的气压电控辅助制动装置   总被引:1,自引:0,他引:1  
为了满足商用车辆纵向驾驶辅助系统对于自动制动的要求, 设计了一种基于高速开关阀的气压电控辅助制动装置。建立了装置的数学模型, 设计了抗积分饱和的PI控制器, 采用脉宽调制方法动态调节高速开关阀, 实现对车辆制动压力的主动控制。搭建了电控辅助制动装置的硬件在环仿真试验平台, 对其控制效果进行试验验证。分析结果表明: 该装置不仅能够快速准确地响应制动指令, 其稳态误差小于0.01 MPa, 响应时间小于0.3 s, 同时具有安装方便, 与商用车制动系统兼容性好的优点。  相似文献   

2.
全挂车辆制动时振动状况的仿真分析及试验研究   总被引:1,自引:0,他引:1  
对全挂车辆在平坦路面上的制动过程进行了动力学分析,确定了全挂车辆制动时振动的激励因素,应用Wilson-θ逐步积分法并通过MATLAB语言编程进行了全挂车辆制动过程的仿真计算,仿真分析结果与试验结果相吻合。  相似文献   

3.
基于DFSS方法,针对某车型开发过程中制动踏板感觉存在"偏软"的问题,对制动减速度低于0.3 g的制动工况下的制动踏板力和制动踏板行程进行优化设计。首先,通过用户新车性能调查数据及客户呼声,确定客户关注的性能指标;其次,通过制动性能试验获取上述性能指标与制动减速度的关系,并对试验结果进行分析确定目标值;然后,结合制动系统开发经验,通过普氏选择方法,确定制动系统配置的最优方案;最后,分析并确定控制因子和噪声因子,通过正交试验获得制动踏板力和制动踏板行程的优化值,并与目标值进行对比。结果表明,优化值和目标值有良好的吻合度,为后续优化提供了经济、有效的方法。  相似文献   

4.
为了探究高速铁路制动区间的典型钢轨波磨现象,基于轮轨摩擦自激振动诱导钢轨波磨的观点展开了研究,通过武广高速铁路制动区段的现场调研,掌握该区段的波磨特征并采集相应的轨道不平顺;基于轮轨摩擦自激振动诱导钢轨波磨的观点分别建立制动区段高速列车的动/拖车轮对-轨道-制动系统的有限元模型,并利用复特征值法进行动/拖车轮轨系统的摩擦自激振动分析,比较动/拖车轮轨系统在制动和非制动工况下系统发生摩擦自激振动的可能性,以及在制动工况下动车轮轨和拖车轮轨系统的摩擦自激振动情况;使用控制变量法研究了制动系统摩擦系数和扣件垂向刚度对动/拖车轮轨系统摩擦自激振动的影响规律.研究结果表明:制动工况更容易引起系统的摩擦自激振动;拖车轮轨系统更容易引起系统摩擦自激振动;控制制动装置摩擦系数约为0.30,扣件垂向刚度约为50 MN/m时能一定程度降低轮轨系统发生摩擦自激振动的可能性,进而抑制钢轨波磨的产生.  相似文献   

5.
为提升商用车极限工况下的侧向稳定性,以某四轮转向商用车为研究对象,基于线性二次型调节器设计了四轮转向控制策略,在此基础上设计了差动制动控制策略.以横向载荷转移率为侧翻评价指标,建立了四轮转向+差动制动的防侧翻综合控制策略,利用TruckSim和MATLAB分别进行了转向盘角阶跃输入工况和鱼钩工况的仿真试验.仿真结果表明...  相似文献   

6.
随着汽车防抱死制动系统(ABS)的广泛应用,商用车ABS装配正确性的检测变得越来越重要。本文介绍了复合式制动检测台体的实现方法,论述了通过对制动台滚桶的启停运行和ABS功能操作的组合控制,依据对相应制动台检测数据和ABS ECU通讯信号的分析,检测平台系统完成ABS装配正确性检测的原理和过程。  相似文献   

7.
本文根据汽车制动的有关理论和标准,建立了汽车制动试验数据采集系统,开发了汽车制动性能试验分析软件,利用所开发的汽车制动系统性能测试系统及分析软件,对某轻型汽车的轴间制动力的匹配进行了深入的研究。结果表明,分析软件具有良好的人机界面、功能较强、对汽车制动性能的研究具有重要的意义。  相似文献   

8.
为减小双钢轮振动压路机拍振对驾驶室振动的影响,提高零部件的可靠性及驾驶员乘坐的舒适性,对某国产双钢轮振动压路机驾驶室的振动进行测试与分析,同时建立压路机驾驶室的四自由度振动模型并进行Matlab仿真。仿真结果表明,通过调节前后振动轮激振频率差Δf可减小拍振对驾驶室的影响;机架与驾驶室之间采用较小阻尼减振块时,驾驶室振动加速度峰值明显降低,且峰值较稳定无明显的波动,可有效降低拍振对驾驶室振动的影响。  相似文献   

9.
汽车防抱死制动系统试验研究   总被引:2,自引:0,他引:2  
通过实例从试验方法、试验项目与结果、试验分析与结论等方面研究了ABS整车道路试验的相关问题。对上述实例进行综合检验的结果表明:该防抱死制动系统达到了国家相关标准规定的各项安全指标要求,顺利通过法定的认证检验。  相似文献   

10.
针对高速列车风阻制动试验方法缺少统一标准的问题,从气动特性和装置工作特性两方面系统梳理了风阻制动的相关成果与进展;分析了风翼板形状、尺寸、安装位置和间距对气动特性的影响,装置结构、工作原理和配置对工作特性的影响,阐明了制动系统性能的试验需求;分析了风阻制动对车上其他设备、轮轨/磁浮列车运行稳定性、气动噪声的影响,阐明了风阻制动运行影响性的试验需求;分析了物体撞击、平均风载荷和脉动风载荷对风阻制动装置的影响,以及风阻制动装置安装对车体结构强度的影响,阐明了风阻制动结构强度的试验需求。研究结果表明:随着新型复合材料风翼板的应用,需采用高速摄影机记录等方式获取更详细的鸟撞试验过程信息;风载荷试验便于模拟验证不同运行工况下装置的制动能力、强度和气动噪声,但受空间和成本的限制,难以进行制动系统和车体的试验;线路试验可以验证制动性能、运行影响性和结构强度,但受天气条件影响,难以模拟所有运行工况,未来需进一步研究风阻制动的标准试验方法,探索不同装置位置、运行工况和故障状态下地面风载荷试验和线路试验模拟方法,完善试验结果的评价标准。  相似文献   

11.
为了研究纯电动客车复合制动系统制动力分配比例, 提出了基于制动驾驶意图辨识的复合制动控制策略。基于隐形马尔科夫理论建立了双层制动驾驶意图辨识模型, 运用道路试验数据对模型进行辨识验证。基于辨识出的驾驶意图和车速, 以前后轮制动力分配比例、ECE法规、电机特性、滑移率、蓄电池特性、超级电容特性与传动系统特性为约束条件, 制定了复合制动系统制动力分配策略, 在9种工况下, 应用Simulink对复合制动系统进行建模仿真。仿真结果表明: 应用基于制动驾驶意图的纯电动客车复合制动控制策略后, 在各种工况下, 摩擦制动系统和电机再生制动系统能够协调稳定地工作, 在保证制动安全性的前提下最大限度地回收了制动能量。低车速轻微制动时能量回收效率最高, 可达到43.84%。高车速紧急制动时能量回收效率最低, 仅为0.89%。  相似文献   

12.
为了比较3种不同备用制动系统的差异, 以制动距离与车钩力为评价指标, 采用AMESim与Simulink软件联合搭建列车制动系统仿真模型与性能参数分析模型。在直通电空制动系统故障情况下, 分析了不同备用制动系统时的制动特性。以120 km·h-1满载运行的某列车为例, 在某单车车辆直通电空制动系统故障后, 对比分析故障、单车热备切换制动、全车热备切换制动与冷备切换制动4种工况下的列车制动距离与车钩力变化趋势, 研究了故障车辆位置对制动距离与车钩力的影响。分析结果表明: 与无备用制动系统的故障工况相比, 实施单车热备切换制动方式后, 制动距离最大减小10.14%, 最大拉钩力最大减小84.59%, 最大压钩力最大减小76.87%;实施全车热备切换制动方式后, 制动距离最大减小6.41%, 最大拉钩力最大减小46.24%, 最大压钩力最大减小10.24%;实施冷备切换制动方式后, 制动距离最小增大3.13%, 最大拉钩力最大减小48.73%, 最大压钩力最大减小25.58%;随着故障车辆的后移, 最大压钩力逐渐增大, 最大拉钩力逐渐减小, 若此时采用单车热备切换制动方式, 最大压钩力与最大拉钩力均呈现逐渐增大的趋势。  相似文献   

13.
商用汽车辅助制动技术综述   总被引:1,自引:0,他引:1  
在商用汽车频繁制动或长时间持续制动时, 为了提高主制动器使用寿命和制动效能, 分析了辅助制动装置的结构与工作原理, 介绍了适用于柴油发动机车辆的发动机制动与排气制动技术和适用于一般商用车辆的辅助制动技术——电涡流缓速器、永久磁铁式缓速器与液力缓速器, 研究了提高制动力矩、改善散热效能、减小拖滞力矩及优化整车匹配等有关辅助制动装置关键技术, 提出了缓速器的最大制动力矩、平均制动力矩及抗热衰退系数等效能评价指标。指出了自励式缓速器、集成式缓速器和缓速器与主制动器联合控制等是商用汽车辅助制动技术的发展方向, 从政策制定和知识产权保护方面能有力推动中国辅助制动技术的发展。  相似文献   

14.
王德江 《交通科技与经济》2012,14(3):115-117,121
汽车制动系统在汽车的安全方面起着至关重要的作用,ABS在保持汽车制动时的方向稳定性并有限度地缩短制动距离、提高汽车制动安全性方面作用明显,使得全世界对ABS的应用都非常重视。在介绍ABS基本原理的基础上,对车辆制动进行受力分析,通过对有无ABS时的性能进行分析对比,说明有ABS工作时汽车制动力的变化频率大,对工程实践具有指导意义。  相似文献   

15.
根据轨道车辆电空复合制动的工作原理, 以全车制动系统为研究对象, 一动一拖制动控制单元为研究载体, 基于多学科协同分析方法, 建立了控制子系统、气制动子系统、电制动子系统与制动执行子系统模型, 基于各子系统之间的关联参数, 搭建了制动系统的联合仿真平台; 根据广佛二期车辆的实际参数, 模拟列车电制动失效工况下常用全制动的运行工况, 计算了空走时间、制动时间、制动距离、制动减速度、瞬时速度、平均减速度、纵向冲动、车钩力、利用黏着系数与制动缸压力, 并与试验结果进行了对比, 以验证集成化仿真平台的可行性和有效性。仿真和试验结果表明: 在制动稳定后, 仿真和试验的列车制动减速度约为1.25m·s-2, 仿真的平均减速度约为1.05m·s-2, 试验的平均减速度约为1.09m·s-2, 误差较小, 且均符合常用全制动的平均减速度不小于1.0m·s-2的要求; 在常用全制动工况下, 采取等磨耗制动力分配的动、拖车利用黏着系数不同, 动车约为0.13, 拖车约为0.12, 但都未超过0.16的最大可利用黏着系数的限制; 虽然动、拖车的质量不同, 但等磨耗工况下施加常用全纯空气制动后, 试验和仿真的动、拖车的制动缸压力均相等, 约为420kPa。由此可见, 可利用基于多学科协同分析的联合仿真平台对轨道车辆制动系统进行车辆级的研究, 为制动系统的开发和设计优化提供理论依据。  相似文献   

16.
A novel regenerative braking algorithm based on regenerative torque optimization with emulate engine compression braking (EECB) was proposed to make effective and maximum use of brake energy in order to improve fuel economy. The actual brake oil pressure of driving wheel which is reduced by the amount of the regenerative braking force is supplied from the electronic hydraulic brake system. Regenerative torque optimization maximizes the actual regenerative power recuperation by energy storage component, and EECB is a useful extended type of regenerative braking. The simulation results show that actual regenerative power recuperation for the novel regenerative braking algorithm is more than using conventional one, and life-span of brake disks is prolonged for the novel algorithm.  相似文献   

17.
列车空气制动系统的数学模型   总被引:5,自引:0,他引:5  
本文根据空气动力学原理,建立了列车空气制动系统的数学模型。该模型中包括列车主管、支管、缸间连接管、制动缸、副风缸、GK型三通阀。模型能反映所有制动(缓解)过程中主要现象。模拟了多种工况、模拟结果和实验结果具有较好的一致性。   相似文献   

18.
差动制动对汽车制动稳定性的影响   总被引:1,自引:0,他引:1  
为了提高汽车制动的安全性, 对差动制动的力学特性进行了分析, 运用ADAMS/Car软件建立了汽车各子系统动力学模型, 通过对主要子系统进行相应的设置, 建立了整车动力学仿真模型, 进行了直线制动及转弯制动稳定性仿真分析, 研究了差动制动对制动稳定性的影响。仿真结果表明: 差动制动方式可以减小汽车转弯制动时的质心侧偏角, 提高汽车的制动稳定性, 但汽车质量对于制动稳定性影响较大, 因此, 应用差动制动时应注意制动力分配方式, 并考虑质量变化的影响。  相似文献   

19.
在汽车检测中,经常会遇到各种问题,影响到检测的效果.高精度和耐冲击性的便携式制动性能测试仪的应用,提高了车辆制动性能的检测效果.  相似文献   

20.
为提高车辆行驶的主动安全性,引入分层控制思想。建立名义横摆角速度和名义质心侧偏角为输出的线性二自由度车辆模型。基于线性二次型调节器设计上层控制器,得到附加横摆力矩,采用差动制动原理,设计中层控制器对附加横摆力矩进行分配,根据中层控制器分配的附加横摆力矩计算滑移率增量,基于PID控制理论设计下层滑移率控制器,以控制车轮的制动压力;最后联合MATLAB/Simulink和CarSim进行鱼钩转向和双移线转向仿真试验。结果表明,采用分层控制能够有效地提高车辆行驶的主动制动稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号