首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
分析了城市单点信号交叉口信号配时的基本参数和方法,建立了以平均延误时间最短、平均停车次数最少、通行能力最大为目标,相位有效绿灯时间、饱和度及周期时长为约束条件的城市单点交叉口两相位信号配时优化的非线性函数模型,采用遗传算法对其进行求解.求解结果表明,该方法可减少车辆的延误和停车次数,提高通行能力,交叉口服务水平由D级提升到B级,从而缓解城市信号交叉口的交通拥挤.  相似文献   

2.
为了解决连续流交叉口车辆多次停车问题,提出了各流向车辆在所遇第2条停车线处不用停车的优化控制策略。通过协调主预信号配时,调整信号控制相位相序方案,促使车辆直接通过所遇第2条停车线,使得左转车辆停车次数由3次减少到2次或者1次,直行车辆停车次数由2次减少到1次。分析各流向车辆到达-驶离图式,构建左转车流在所遇第3条停车线处的延误计算模型,结合Webster经典模型,给出连续流交叉口整体延误计算模型,其计算结果与VISSIM仿真结果基本一致。推导给出车辆不二次停车、车车不冲突以及连续流交叉口自身交通组织等因素所需满足的约束条件,以交叉口车均延误最小化为优化目标,构建连续流交叉口主预信号协调配时优化控制模型,并设计了4种交通场景以验证不同情况下的效益改善情况。研究结果表明:通过信号协调减少1次停车,能够降低50%以上的车均延误和车均停车次数;根据各转向交通量所占比例选择合适的车道分配方案有助于提升连续流交叉口通行效率;在2种策略下交叉口车均停车次数分别为0.88~1.05、0.59~0.77,与已有控制策略约2次车均停车次数相比,明显降低了连续流交叉口车辆停车次数。研究成果可为连续流交叉口控制提供新的视角,对交叉口通行效率的提升效果也更加显著。  相似文献   

3.
城市单点交叉口的信号配时优化研究   总被引:4,自引:0,他引:4  
信号配时优化是提高交叉口服务水平的重要途径.文章系统地介绍了信号配时模型的现有研究成果,然后分析了Synchro仿真系统中信号配时优化模型、用于延误计算的百分比延误方法(PDM)模型、排队长度计算模型、停车次数计算模型、通行能力计算模型和服务水平等模型,并以延误、停车次数、排队长度组合成的综合性能指标对广州市天河北路与天河东路交叉口的当前信号相位、相序进行了全面的优化研究.应用Synchro系统优化后,最大车流量和通过能力比由1.24减小到1.02,平均控制延误由85.8 s减少到60.3 s,服务水平由F级提高到E级.  相似文献   

4.
单点交叉口信号实时配时模型及蚂蚁算法   总被引:2,自引:2,他引:2  
颜艳霞  李文权 《公路交通科技》2006,23(11):116-119,125
以延误时间、停车次数和通行能力作为性能指标,各性能指标的加权系数随交通需求的不同而变化。提出交叉口实时配时,采用一种新型随机搜索思想——蚂蚁优化算法来求解此模型的非线形问题。仿真试验表明,所得结果优于经典方法,降低了交叉口的总延误时间和停车次数,提高了通行能力。  相似文献   

5.
基于Synchro的单点交叉口信号配时优化研究   总被引:5,自引:0,他引:5  
首先系统地介绍了信号配时模型的现有研究成果,然后分析了Srnchro仿真系统中信号配时优化模型、用于延误计算的百分比延误方法(PDM)模型、排队长度计算模型、停车次数计算模型、通行能力计算模型和服务水平等模型.以广州市天河北路与天河东路交叉口为例,使用延误、停车次数、排队长度组合成的综合性能指标对交叉口的当前信号相位、相序进行了全面的优化研究.应用Synchro系统优化后,最大车流量和通过能力比由1.24减小到1.02,平均控制延误由85.8 s减少到60.3 s,服务水平由F级提高到E级.试验结果表明应用Synchro系统可有效提高路口的控制效果.  相似文献   

6.
为提高我国城市道路交叉口混合交通流智能信号控制的效率,提出一种基于高维多目标进化算法的交叉口混合交通流信号智能优化控制方法.首先,提出一种新的高维多目标进化算法GRMODE,设计了新的算法模型并改进了Pareto支配排序等多项关键技术;其次,设计了基于GRMODE算法的交叉口混合交通流高维多目标信号优化控制模型,提供5项控制目标最优的信号控制方案.在南京市交叉口信号控制中的仿真实验结果表明,基于GRMODE算法的控制模型能够使交叉口机动车平均延误、停车次数、通行能力、非机动车平均延误及行人等待时间等多项性能指标同时达到最优,提升交叉口智能信号控制效率.  相似文献   

7.
《公路》2021,66(6):240-247
为研究考虑自动驾驶平稳性的城市十字交叉口通行能力问题,建立了自动驾驶汽车模型,采用VISSIM软件对十字交叉口在混合交通流下的交通状况进行仿真实验,分析了不同自动驾驶汽车比例和驾驶偏好对十字交叉口的行程时间、平均车速和延误的影响规律。结果表明:在自动、手动驾驶汽车车速分别为30km/h和50km/h的场景下,增大自动驾驶汽车比例,平均车速下降且波动大,汽车行程时间与平均延误增加,延误由十字交叉口向外扩散;提高自动驾驶汽车车速至50km/h并改变信号配时,汽车行程时间最高缩短24%,平均车速提高且保持稳定,十字交叉口延误扩散情况得到改善;对比不同驾驶偏好的研究发现,限制最大加/减速度时,减小停车间距与车头时距能够提升十字交叉口通行能力。  相似文献   

8.
针对江西省南昌县向阳路商业街由双向通行改为单向交通组织的问题,运用Webster最佳信号配时方法调整单行后交叉口的信号配时方案,并利用微观仿真软件VISSIM模拟单向交通组织方案实行后的交通运行状况。结果表明实行单向交通后相关交叉口的延误降低、车辆排队长度减小、停车次数减少,交通拥堵状况得到改善。  相似文献   

9.
介绍了信号配时模型的现有研究成果及Synchro仿真系统中的信号配时优化模型、用于延误计算的百分比延误方法(PDM)模型、停车次数计算模型、通行能力计算模型和服务水平模型;以重庆市临江门交叉口为例,在调查实际数据的基础上,结合进口道调整对当前信号配时方案进行了优化研究.经过Synchro系统优化后,该交叉口各项评价指标...  相似文献   

10.
干线协调控制通常以干线方向通行效率最大为目标,导致一些小型交叉口次路方向延误较大。针对该问题,基于车路协同环境,研究了车速引导下的双周期干线多目标优化方法。针对上游交叉口饱和交通流与非饱和交通流2种情况,提出了考虑排队消散和相位差的动态车速引导模型。以干线延误、通行能力、停车次数,双周期交叉口次路方向延误为优化目标,构建了车速引导下的双周期干线多目标优化模型,采用遗传算法对模型进行求解。基于COM接口,采用Python和Vissim搭建车路协同仿真环境,以北京市两广路的3个路口为例进行仿真验证。对比了本文模型与原配时方案、无车速引导下双周期干线多目标优化模型的效果,结果表明,本文模型相比于原配时方案和无车速引导下多目标优化模型,干线平均延误分别减少19.6%,8.3%,通行能力分别提升5.6%,8.4%,平均停车次数分别减少11.2%,24.2%,双周期交叉口次路方向平均延误分别减少33.9%,5.8%,表明本文模型将速度引导与多目标优化相结合,提高了双周期干线的通行效率,降低了双周期交叉口次路方向的延误,达到了干线和双周期交叉口共同优化的目的。   相似文献   

11.
基于VISSIM的城市交叉口改善优化研究   总被引:2,自引:0,他引:2  
首先系统地阐述了城市交叉口改善优化的现有研究成果,然后介绍了微观交通仿真软件VISSIM的模型及理论基础以及用于评价交叉口性能的行程时间、平均延误、排队长度、停车次数、通行能力、饱和度和服务水平等评价指标;以广州市花地大道与浣花路交叉口为例,通过信号交叉口调查数据的统计分析,从时空交通设计优化方面提出交叉口优化方案,并利用VISSIM交通仿真软件对交叉口的现状和优化方案进行仿真研究。结果表明,对交叉口进行时空改善优化后,交叉口的饱和度由1.24减小到0.91,平均每车延误由71.6 s减少到47.1 s,服务水平由E提高到D。实践表明,该方法具有良好的操作性和实用性。  相似文献   

12.
以交叉口交通效益最大化为目标,对现代有轨电车条件下的交叉口信号控制方法展开研究.改进了NSGA-II算法,提出了基于非支配排序的交叉口多目标优化算法,对单点交叉口多目标优化模型求解.在获取基础信号配时方案的基础上,根据车辆的实时参数,构建现代有轨电车主动信号优先控制方案评价指标体系,利用DEA-TOPSIS模型客观地从优先相位延误、非优先相位延误和电车偏移度等多个方面对各信号控制方法进行分析,实现最优信号控制.仿真实验表明:交叉口人均延误时间和平均停车次数为有效的控制目标;基于非支配排序的交叉口多目标优化算法与加权组合遗传算法相比,可综合优化多目标;与NSGA-II算法相比,可降低交叉口人均延误时间1.8 s,降低平均停车次数0.02;基于DEA-TOPSIS模型的有轨电车信号控制评价方法可以客观地综合多角度分析各信号控制方法的有效性和变化趋势,实现最优信号控制.   相似文献   

13.
信号交叉口转向可变车道长度研究   总被引:2,自引:0,他引:2  
从信号交叉口服务水平和路权角度出发,提出了转向可变车道的概念,并且分析其设置的原则及条件。在此基础上,从交叉口的道路交通条件及通行效率方面考虑,建立了转向可变车道长度的最大值和最小值的计算模型。通过Vissim仿真模拟,从排队长度、延误和停车次数方面分析了转向可变车道的应用效果。  相似文献   

14.
基于城市平面信号交叉口的客观实际,建立多约束的单点定时信号配时优化模型,模型以节点通行能力最大和车辆平均延误最小作为目标,通过转换得到综合目标函数,并利用阈函数法(SUMT)获取最优配时参数.与此同时,引入交叉口实例,结合调查数据,导入信号配时优化模型,通过程序计算获取配时参数、通行能力及车辆平均延误值,其结果通过配时检验,证明存在较高的理论参考价值.  相似文献   

15.
为了减少车队在干道交叉口的尾气排放,本文根据比功率排放模型,构建了尾气排放量与延误时间、停车次数之间的关系模型;根据干道协调控制下延误时间、停车次数与相位差之间的相关关系,建立了一种以干道车队尾气排放总量最小为目标的干道双向信号协调控制模型,并利用MATLAB编程软件实现了信号周期与相位差的优化;最后应用该模型对相邻信号交叉口进行了算例测试分析,研究结果表明:在未饱和状态下,双向车队尾气排放总量与其总的延误时间和停车次数既具有一定的相关性,也具有一定的差异性,尾气排放总量最小是延误时间最短和停车次数最少的综合表现。  相似文献   

16.
以减少机动车在交叉口的延误时间和尾气排放为目标,针对目前交通信号控制模型中普遍采用单一目标进行求解的问题,以非饱和交叉口为研究对象建立了信号交叉口多目标动态决策模型(MODD模型),对信号周期时长、绿信比和相序3个信号配时参数同时进行优化,提出交叉口多目标评价满意度函数,制定交叉口信号控制决策准则并应用混合遗传算法求解最优决策变量.算例的求解结果显示,混合遗传算法能够均匀地逼近Pareto最优前端,多目标优化方法更能减少车辆在交叉口上的停车延误和停车次数,对单交叉口信号配时有理论指导和应用价值.  相似文献   

17.
为了解决交叉口高饱和以及公交优先多申请导致的公交优先效果不佳的难题,考虑公交运行车速可以引导调节的环境,以公交车的延误与停车次数加权最小为目标,以周期时长和相位饱和度为约束条件,将每辆公交车的车速调整量和交叉口信号相位时长一起作为优化变量,建立了公交车速引导和交叉口信号配时集成优化的整数线性规划模型。其中,采用0-1变量表示公交车停车次数以及公交车是否能够在到达周期内通过。分析结果表明:当交叉口高负荷,公交车到达时刻调整量上限为±8s时,与背景信号配时相比,车速优化模型的公交车人均延误减少14.35s(降低27.71%),停车次数减少1次(降低14.29%);信号优化模型的公交车人均延误减少12.39s(降低23.93%),停车次数减少1次;而所提出的集成优化模型可以使公交车人均延误减少40.68s(降低78.56%),停车次数减少3次(降低42.86%),超过单方面信号优化与单方面车速引导产生的公交优先效果之和;即使考虑到信号配时与车速引导相结合,但是采用先到先服务的方法只能使公交车人均延误减少17.29s(降低33.39%),停车次数减少1次。当交叉口饱和度过高,信号配时调整余地不大时,可以通过适当增加公交车车速调整量达到理想的公交优先效果。  相似文献   

18.
车路协同环境是利用无线通信技术、电子信息技术等高新技术建立的新颖交通环境,其以车车、车路通信为基础,有效实现了信息在系统内部的快速、准确、有效的传输,弥补了目前交通基础数据实时性、可靠性等方面存在不足.利用车路协同环境下,在单车车速引导的基础上,以交叉口整体效益最佳为目标,提出信号交叉口多车协同车速引导模型,以最大限度地降低交叉口车均延误,减少平均停车次数,提高绿灯时间利用率.同时,以上海市曹安路-绿苑路交叉口为例进行仿真验证,研究结果表明,相比于单车引导而言,多车协同引导可适用于高、中、低等不同饱和状态,且可有效降低交叉口车均延误及平均停车次数.   相似文献   

19.
交叉口信号控制评价指标的权重系数应随控制策略的不同而变化。根据各个进口道流量和占有率的关系,可以把交叉口交通状态划分为空闲、顺畅、繁忙和拥堵4种类型。考虑4种交通状态下交通流的不同特点,运用层次分析法,对机动车平均延误、平均停车时间、车道通行能力、车辆排队长度和行人平均延误等评价指标建立判断矩阵,通过计算特征向量,从而确定各个评价指标的在信号控制模型的权重系数。最后对佛山市实际交叉口的例子进行计算和仿真,结果表明,基于层次分析法的权重确定方法综合反映了不同交通状态的控制需求,提高了权重制定的准确性和客观性。  相似文献   

20.
有轨电车信号优先控制对交叉口车辆通行效率和安全至关重要。文中通过VISSIM仿真系统的VisVAP感应信号控制模块,设计基于共享相位的有轨电车相对信号优先绝对信号优先控制方案,对路中敷设、半独立路权的十字形有轨电车线路交叉口的平均车辆延误、排队长度及停车次数等指标与定时信号进行比较。结果表明,采用共享相位条件下的相对信号优先控制能较好地兼顾有轨电车与社会车辆在交叉口的通行效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号