首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
池州长江公路大桥主桥为(3×48+96+828+280+100)m混合梁斜拉桥,4号主墩承台位于大堤压浸台的二级台阶迎水斜坡上,临近长江主航道,基坑开挖达10m,大堤侧与临江侧有较大不平衡土压力。针对此难题,通过围堰方案比选,采用锁口钢管桩加内支撑围檩结构围堰,锁口钢管桩采用刚度相对较大的820×10主钢管,钢围檩采用H型钢(沿管桩围堰四周设置2层),围堰结构受力合理。施工时,先安装第一层围檩,以第一层围檩为导向,采用DZ120振动锤施打钢管桩,控制垂直度,优化合龙工艺,完成钢管桩围堰施工。基坑土方开挖前,利用弃土修筑临江侧反压坡道,抵消不平衡土压力。基坑采用分层台阶法开挖,在枯水季节干挖土方。施工监测结果表明,围堰结构安全稳定,大堤结构安全,抗渗性能良好。  相似文献   

2.
新建江汉四桥围堰由于开挖深度大,设计采取排桩结合锁扣钢管桩并设置2道围檩和支撑的结构形式,以确保围堰的安全。设计中对围堰加载以后的强度、刚度,以及稳定性进行了验算,结果均在规范允许值范围之内,关键受力结构产生的应力和变形均满足结构的允许值,验证了该方案的可行性和安全可靠。  相似文献   

3.
杭州钱江铁路新桥位于钱塘江强涌潮地区,部分墩水下承台基础采用拉森Ⅵ型钢板桩围堰施工.以该桥56号墩为例,介绍拉森Ⅵ型钢板桩围堰施工及计算.钢板桩围堰施工期间,其外侧土压力按静止土压力,内侧土压力按被动土压力计算.2种最不利工况,第1种为钢板桩围堰吸泥完成到封底前,主要确定钢板桩入土深度及验算钢板桩、围檩及内支撑强度和刚度;第2种为钢板桩围堰抽水完成后,仅验算钢板桩围堰、围檩及内支撑强度和刚度.强涌潮时分2种工况计算:第1种为在钢板桩围堰整体计算模型上增加迎潮面涌潮压力;第2种为在钢板桩围堰整体计算模型上增加迎潮面和两侧面涌潮压力.  相似文献   

4.
沌口长江公路大桥主桥为(100+275+760+275+100)m钢箱梁斜拉桥,2号墩位于长江砂层区域,砂层厚度达7m,常年水深5m以上。2号墩钻孔桩施工完成后,采用钢板桩围堰进行水中深基坑承台施工。钢板桩采用拉森Ⅵ(600mm×210mm)钢板桩(长24m),围檩系统共3层,由3HN700×300型钢、Φ1 000mm×10mm钢管、2HN588×300型钢等组成。钢板桩围堰采用"先支法"施工工艺,首先采用导向挂靴工艺,分层整体下放围檩系统,下放到位后插打钢板桩;然后水下吸泥,浇筑封底混凝土,待封底混凝土强度达到设计要求后,以控制钢板桩内外水头差的原理进行分级抽水,并对第一、第二层围檩系统进行完善及体系转换;第三层围檩施工完成后,进行最后一级抽水及第一层承台施工,完成第三层围檩体系转换后拆除第三层围檩,进行第二层承台施工。  相似文献   

5.
以某跨河大桥主墩承台基坑施工为例,介绍了密扣式拉森钢板桩围堰支护方法;在确定施工总体思路和施工顺序的基础上,运用MIDAS/Civil软件建立力学模型,依据施工过程确定计算工况,对围檩与支撑构件的受力状况进行计算,验算了钢板桩的实际受力及支护结构的稳定性;并依据工程进度对钢板桩变形及内撑轴力进行了实时监控,确保支护结构的安全。  相似文献   

6.
某大桥主墩钢板桩围堰施工中,由于钢板桩置入河床的深度大,在抽水过程中围堰内外侧的水压力差大,各层内支撑、钢板桩承受很大的水压力,故保证钢板桩及各层内支撑的结构安全、稳定性在施工中至关重要.笔者采用大型有限元Ansys软件对围堰结构进行建模,分析和计算了各种工况下钢板桩及各层内支撑的强度、刚度和稳定性.结果表明,围堰结构的设计满足强度、刚度和稳定性要求,可以按设计安全施工.  相似文献   

7.
重庆官栈河大桥主桥为(62+110+62) m三跨连续刚构桥,主墩基础采用锁口钢管桩围堰施工。围堰施工正常水位+325.300 m,施工期控制水位+330.500 m。在该桥主墩围堰完成四周锁口钢管桩插打及前4道内支撑安装后,因极端天气原因,长寿湖水位上涨到+332.200 m,危及围堰安全。为解决钢管桩围堰的安全问题,提出采用水下施工内支撑的加固方案。待围堰内部水头与外部保持一致后,将已经插打的锁口钢管桩加高至标高+334.000 m,拆除已安装好的4道内支撑,重新安装6道内支撑。采用MIDAS Civil软件分别建立加固前、后钢管桩围堰结构有限元模型,分析钢管桩及内支撑的受力安全与稳定性。结果表明:施工控制水位+330.500 m下,围堰结构最大正应力由加固前的162.6 MPa下降到加固后的82.3 MPa,下降了49.3%;承载水位可从施工控制水位+330.500 m增加到目标控制水位+333.500 m,且强度和刚度等均留有一定储备。水下施工内支撑的加固方案可提升围堰的承载能力。该桥围堰加固后整体受力效果良好,已顺利完成承台浇筑施工。  相似文献   

8.
针对深水基础承台明开挖基坑并采用咬合桩进行基坑支护的施工方法,对咬合桩的受力进行数值分析,探讨咬合桩的围檩支护位置与桩入土深度、围檩受力及桩身最大弯矩之间的关系,优化围檩的结构形式。分析结果表明:随着围檩支护位置下移,桩身弯矩明显减小,但围檩支撑反力显著增大;围檩四周支撑应采用刚度较大的工字钢进行加强。咬合桩的分析过程及计算方法可为同类工程提供借鉴。  相似文献   

9.
结合京沪高速铁路跨吴淞江连续梁大桥主墩承台钢板桩围堰深水基础施工项目,通过采用钢板桩、双壁钢、钢管桩围堰方案的对比,选择采用拉森IV止水钢板桩+填心(土)平台,变水上施工为陆地施工的方案,同时采用圆形钢筋混凝土围檩作为支撑,降低施工难度、扩充施工空间、节约成本的施工方法。  相似文献   

10.
锁口钢围堰以其良好的经济效益及施工特点常广泛应用于桥墩基坑开挖过程中,但基于其复杂的结构特征,致使其受力特征较为复杂。该文以某大桥北岸主墩承台开挖基坑过程中所采用锁口钢管桩为例,详细分析其在施工过程中的受力特性。在3种主要不利荷载工况下,基于有限元分析软件,建立了锁口钢管桩三维整体模型。分析并验算了典型不利荷载工况下,锁口钢围堰结构的变形、强度及稳定性。数值计算结果与规范值对比分析表明锁口钢围堰结构在施工过程中满足规范要求的强度、刚度及稳定性要求,具有良好的受力性能。  相似文献   

11.
昌九高铁扬子洲赣江公铁大桥西支主桥为(48+144+320+144+48) m无砟轨道钢箱桁组合梁斜拉桥。桥塔墩位于通航河道内,桥位处河床覆盖层浅,基岩强度高,基础由大直径钻孔桩和矩形嵌岩低桩承台组成,承台采用锁口钢管桩围堰施工方案。G33号主墩围堰平面设计尺寸54.56 m×28.52 m,锁口钢管桩采用Q345B材质■1 020 mm螺旋钢管,长28 m,钢管桩之间采用C-T形锁扣连接;围堰设置4层内支撑,单层内支撑设3道对撑,内支撑四角设型钢斜撑;基底设置混凝土垫层参与围堰结构受力。围堰采用XR360旋挖钻机在岩层中引孔,孔内换填细砂后插打钢管桩,钢管桩壁内、外两侧换填砂采用高压旋喷注浆加固。围堰设置智能化监测系统,对围堰受力、变形等进行实时动态监控。实践证明,该桥围堰结构安全可靠、止水效果良好、施工快捷高效。  相似文献   

12.
以新加坡填海区公铁两用复合高架桥为例,介绍了钢板桩在承台开挖支护工程中的应用技术,叙述了基于PLAXIS软件的摩尔-库伦模块的钢板桩的长度、支撑和围檩结构验算以及施工过程中钢板桩、围檩、支撑的安装、拆除要点等方面。通过本工程实际应用证明,钢板桩支护既能满足施工的安全要求,同时能保护环境和节约投资,具有优越的工程性能。  相似文献   

13.
珠海横琴二桥跨天沐河段桥型为2联3×50m预应力钢筋混凝土宽幅连续箱梁桥,该桥94号~97号墩承台地处深厚软弱地质条件,为确保钢板桩围堰支护结构的稳定及安全性,综合考虑承台结构尺寸、承台埋深、地质及水文条件后,确定采用复合地基处理与钢板桩围堰相结合的方案。钢板桩围堰平面尺寸为12.2m×11m,拉森Ⅳ型Q345B钢板桩长18m,围堰内设2道内支撑。封底混凝土面下淤泥层采用9m长水泥搅拌桩加固成复合地基。采用等值梁法对钢板桩围堰进行力学计算,并采用MIDAS Civil有限元软件建立最不利工况梁单元模型,采用容许应力法对钢板桩强度、内支撑、基坑底土抗隆起进行验算,结果均满足规范要求。  相似文献   

14.
鄂东长江大桥主5号墩位于长江北河道内,基础为钻孔灌注桩群桩基础,高桩承台.承台尺寸为42 m×29.5 m×8 m,采用有底钢管围堰施工.围堰由壁板、底板、围檩支撑、定位、限位、下放及底板提吊等系统组成.首次采用钢管作为围堰壁板结构.壁板单元由钢管组焊接而成,各单元现场用螺栓连接.主5号墩承台钢管围堰施工已取得成功.从结构比选、设计、安装等方面介绍该承台有底钢管围堰.  相似文献   

15.
夹溪2号桥桥址位于金华市境内,两侧桥台位于山坡,横向较陡,其中34#、35#台为连续梁主墩,承台尺寸为:下承台15. 2m×23. 2m×4m、上承台14m×22m×2m。承台开挖深度为7. 98m,且承台位于夹溪边,地下水位较高,故采用钢板桩围堰对其进行支护开挖施工。本工程采用理正深基坑7. 0软件进行建模计算分析,单元计算和整体计算相结合来确定钢板桩嵌入深度、稳定性及围檩、支撑的强度及刚度等。本文所采用的方法对以后类似工程具有可借鉴性,为其提供可参考的依据。  相似文献   

16.
以某大桥主墩承台的钢围堰施工为例,分析了软土地基下钢围堰施工阶段的受力及稳定性;结合工程地质情况,提出开挖前采用高压旋喷桩加固围堰内外软土;利用MIDAS/Civil模拟分析软土加固后围堰的强度、刚度,通过支护底部抗隆起、嵌固稳定性加固前后的验算对比分析围堰设计及软土加固的可行性。  相似文献   

17.
武汉青山长江公路大桥主桥为(350+938+350)m双塔双索面斜拉桥,大桥南主墩基础由大直径钻孔桩及哑铃形承台组成。承台平面尺寸巨大(98.9m×39.5m),埋置深度约15m,需进行超大型深基坑施工。承台采用锁口钢管桩围堰施工方案,围堰平面设计为101.7 m×41.3m的正多边形哑铃结构,总高35m,其中锁口钢管桩长33m,钢管桩顶部设有2m高单壁钢围堰(用以现场根据实时水位进行接高)。围堰共设有3层内支撑,内支撑为1.8m×1.2m的钢箱结构,封底混凝土厚5m,在承台系梁处设计8根1.8m辅助桩以减小封底混凝土应力。采用MIDAS软件对围堰整体及局部受力进行分析,结果表明,围堰结构各项指标均满足规范要求。  相似文献   

18.
该文结合某斜拉桥主墩承台的施工实践,介绍了采用锁口钢管桩围堰挡土止水施工的相关技术。重点介绍了该围堰相关的设计验算、结构布置、锁口钢管桩加工、锁口桩沉桩、围堰内除土、支撑安装、水下封底、抽水堵漏等,供类似桥梁施工时参考。  相似文献   

19.
本文介绍了小榄水道桥主L2号墩承台钢板桩围堰的设计及施工方案,设计中选用钢板桩作为主受力结构,选用钢管作为内支撑结构,围堰结构采用手动计算为主,软件辅助的方法进行验算。土压力采用朗金理论进行计算,钢板桩结构采用等值梁法和盾恩近似法进行计算。因水的流速很小,在围堰结构验算时忽略不计。  相似文献   

20.
针对珠海市洪鹤大桥工程先行标跨越洪湾涌12#墩地处深厚淤泥地质条件,为确保基坑支护结构的稳定性和安全性,综合考虑现场已有施工条件、承台埋深、承台结构形式、地质及水文条件后,决定采用钢板桩围堰方案,并对围堰结构进行了设计计算。在围堰结构处于最不利工况条件下,对内支撑受力、钢板桩强度及基底土体抗隆起进行了验算,结果均满足规范要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号