共查询到20条相似文献,搜索用时 15 毫秒
1.
岩溶区隧道因受岩溶发育程度、岩溶位置等影响,其围岩变形特征与一般隧道存在较大区别.以某岩溶隧道为工程背景,对隧道仰拱底部存在隐伏空腔的围岩变形进行现场监测研究,并运用有限差分软件进行仿真分析,现场监测和仿真分析所得围岩变形规律基本一致.研究结果表明:随着隧道施工接近并通过空腔顶部,隧道拱顶处围岩向下沉降,其值不断增大;... 相似文献
2.
隧道底部溶洞的处理及溶洞对隧道围岩稳定性影响的研究 总被引:2,自引:0,他引:2
张花高速公路隧道围岩以白云岩、粘土为主,岩溶发育,无充填物溶洞很多,主要分布在隧道底部,这给隧道的施工带来了困难.着重探讨了隧道底部溶洞的处理,且分析了底部溶洞对隧道围岩稳定性的影响. 相似文献
3.
318国道利川绕城段毛坝沟隧道,围岩节理裂隙较为发育,部分区段出现溶洞、溶腔等不利于围岩稳定的不良地质。本文以该工程为依托,通过FLAC3D建立数值计算的三维模型,同时结合现场监测数据,对比分析隧道开挖过程中的围岩稳定性。结果表明:靠近溶洞断面洞周围岩变形相对较大(拱顶沉降值为6. 3mm),随着监测断面远离溶洞区,变形值逐渐减小(拱顶沉降值为3. 3mm),整体上围岩变形均处在安全合理的变形区间内且与监测结果较为吻合。靠近溶洞断面的拱顶、拱底受力表现为受拉并出现小范围拉伸塑性区,施工中应加强该位置的支护和监测。 相似文献
4.
5.
依托某高速公路隧道,运用有限元分析软件,对大断面公路隧道临近溶洞不同尺寸的围岩稳定性及钢拱架内力进行了分析。结果表明:①洞周位移随溶洞尺寸的增大均有所增加,溶洞尺寸显著影响掌子面挤出;②掌子面临近溶洞位置的塑性应变最大;③初期支护整体承受的弯矩以正弯矩为主(内侧受拉),墙脚位置出现小范围的负弯矩(外侧受拉),并伴随应力集中现象,是受力的薄弱环节,随着溶洞尺寸的增大,临近溶洞位置的弯矩出现不同程度的减小;④初期支护的轴力整体呈上大下小的分布,随着溶洞尺寸的增大,初期支护临近溶洞位置的轴力显著增加,加剧了轴力分布的不均匀性。 相似文献
6.
选取忠垫高速公路某岩溶隧道为研究对象,建立岩溶隧道三维实体模型,利用软件FLAC3D对拱顶部存在充水溶洞的隧道施工过程中的围岩位移特征进行数值模拟研究,并将数值计算结果与现场监测结果进行了比较分析。研究结果表明:隧道拱顶处围岩竖向位移最大、拱肩处次之;水平位移以边墙部为最大,拱肩处水平位移先向隧道内变形,后向隧道外变形。 相似文献
7.
8.
隧道开挖是一个应力重分布的过程,新的应力平衡将导致隧道围岩产生不同程度的变形,围岩变形是影响围岩稳定性的关键因素,也是隧道施工质量控制的关键.采用ABAQUS软件对隧道开挖过程进行模拟,研究不同施工条件下隧道围岩的稳定性,为隧道施工选择合理的施工方法,结合典型断面监测结果进行比对.研究表明:动态施工方法调整能够保证施工... 相似文献
9.
10.
岩溶等不良地质情况的存在对隧道建设极易产生极大的安全隐患。为研究隧道上部既有溶洞对隧道围岩的影响,以霍永高速某隧道为工程依托,通过有限元计算软件MIDAS GTS建立起隧道结构与围岩的数值模型,着重研究了上部溶洞在不同位置及不同大小的情况下隧道衬砌的位移及应力变化特征。结果表明:溶洞对围岩位移产生了显著的影响,其中拱顶下沉的增幅最大;溶洞的半径越大,围岩所产生的变形也就越大;当溶洞半径R=2m时,随着溶洞距离的增大,剪应力并未发生任何实质性的变化;当距离L=2m时,随着溶洞半径的增大,剪应力逐渐增大。于此同时给出相应的应对策略,以降低施工及后期运营过程中的安全风险。 相似文献
11.
12.
隧道底部溶洞顶板安全厚度预测模型 总被引:2,自引:0,他引:2
以某公路岩溶隧道为背景,采用二维弹塑性有限元方法对隧道开挖进行数值模拟计算,分析隧道底部溶洞顶板安全厚度的影响因素,研究各影响因素与安全厚度的相关变化规律,并用多元回归和支持向量机方法建立能综合体现各影响因素的溶洞顶板安全厚度预测模型,从而为岩溶隧道设计施工提供一定的科学依据和指导。 相似文献
13.
14.
15.
随着公路建设的发展,隧道也随着发展起来,但由于隧道工程受地质条件的影响较大,导致其施工负责,技术要求较高等。本文根据实际工程案例,利用新奥法及建立有限元模型的方法对隧道的围岩稳定性进行研究。 相似文献
16.
基于隧道上方存在充水溶洞时容易对开挖造成很高的风险性,因此要预留一定的安全岩墙确保施工安全.通过数值模拟对比分析了隧道顶部正侧和上方侧向存在充水溶洞时对隧道开挖围岩稳定性的影响,计算结果表明:在自重应力作用下,隧道开挖后塑性区与充水溶洞塑性区贯通后易造成隧道涌水塌方;当隧道顶部和侧向存在充水溶洞时,如果洞径比小于1.0,建议安全岩墙的厚度应分别至少预留0.8倍隧道洞径和1.0倍隧道洞径;而洞径比大于1.0时,则安全岩墙厚度应分别至少大于1.0倍隧道洞径和1.2倍隧道洞径. 相似文献
17.
公路隧道在膨胀性围岩地段施工的稳定性分析 总被引:1,自引:0,他引:1
基于现场试验的调查与工程实例的统计,本文对公路隧道在膨胀性围碉地段施工不稳定性的难题,从技术的角度给以了分析与研究。指出应当从隧道仰拱方向给膨胀性围碉以足够刚度的约束,这是确保隧道支护稳定所必需的基本条件,同时应当允许爷拱底部围岩发生适量的变形以降低存在于仰拱与围岩之间的高接触应力,在此了,建议采用一种内含柔性变形层的复合式仰拱支护结构,作为膨胀性围岩地段隧道支护的合理技术措施,本文研究对于在建的 相似文献
18.
隧道进出洞口处是地质灾害多发的地段.以某工程为背景,采用有限元强度折减法,研究隧道开挖过程中安全系数的变化情况,对隧道进洞口浅埋段发生坍塌破坏的规律及机理作深入解释.计算分析表明,因为算例隧道处于坡脚位置,开挖引起边坡失稳是导致软弱围岩隧道进洞灾害多发的根本原因,针对这种地质条件下隧道进洞的安全隐患,对其设计和施工提出一些合理化建议. 相似文献
19.
结合某隧道2#通风竖井施工项目,采用数值模拟的方法,分析了竖井及风道的施工对围岩衬砌稳定性的影响。研究结果表明:竖井开挖初期,衬砌压应力、壁座拉应力和位移量均随着竖井的开挖逐步增大,最大值分别为8.1 MPa、1.03 MPa和2.62 mm。开挖到第五步和第六步时对衬砌的应力和位移影响最为不利,应采取相应的保护措施。风道开挖后拱底上抬、拱顶下沉,拱底衬砌最大位移量为3.2 mm,临近竖井部位衬砌拉应力值达到3.76 MPa,可能对初期衬砌造成局部破坏。竖井和风道连接部位衬砌和围岩均出现拉应力集中,最大拉应力值分别达到3.8 MPa和1.6 MPa,围岩最大上抬位移为2.66 mm,竖井和风道连接部位出现局部破损,在实际工程的施工中需予以加固。 相似文献
20.
建立公路隧道施工阶段围岩分级的思考 总被引:3,自引:0,他引:3
文章论述了建立公路隧道施工阶段围岩分级体系的必要性,讨论了建立公路隧道施工阶段围岩分级体系的基本方法,最后分析了在我国建立公路隧道施工阶段围岩分级体系的可行性。 相似文献