首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 656 毫秒
1.
为探明北京地区大直径泥水平衡盾构在复杂互层地层下的掘进参数变化情况,依托北京地区目前最大直径泥水平衡盾构工程清华园隧道,使用数理统计的方法针对盾构由粉质黏土掘进至卵石土、砂、粉质黏土互层地层时盾构掘进参数的变化规律及波动情况进行研究。研究结果表明: 泥水平衡盾构在粉质黏土区域掘进时,盾构刀盘转矩及盾构推力波动情况不明显;泥水平衡盾构在复杂互层地质条件下掘进时,盾构刀盘转矩及盾构推力分别增长46.43%和46.03%,同时盾构刀盘转矩的波动情况较粉质黏土区域有所增长,而盾构推力的波动情况与粉质黏土区域类似。  相似文献   

2.
余燚  刘思思  蒋进  付敏 《公路》2020,(7):7-13
以横贯宜阳的新伊高速室内土工试验数据为基础,采用波尔森(Pearson)检验法,分析该地区粉质黏土的含水率等土性指标的概率分布特征,进而获得该地区粉质黏土工程地质特性。通过分析该地区粉质黏土的含水率ω与土体其他重要物理力学指标的波尔森相关系数,建立含水率ω与其他土性指标间的经验公式。结果表明,该粉质黏土的压缩性较差、抗剪强度较低;物理力学指标分布良好,但液性指数IL变异性较大。根据Pearson理论分析结果,该地区粉质黏土含水率与孔隙比和塑限为中相关程度的正相关关系,与液性指数为强相关程度的正相关关系。研究结果可供类似工程提供参考。  相似文献   

3.
设计了一种可测量降雨入渗与底部排水条件下土体体积含水率与基质吸力变化规律的试验装置,开展不同降雨强度条件下砂土和粉质黏土的降雨入渗与排水过程室内模型试验,得到了不同土质在不同降雨强度下各高程处体积含水率与基质吸力的变化规律。结果表明:可将降雨入渗条件下不同土质的体积含水率变化划分为3个阶段,首先表面土体含水率上升,随着雨水的入渗,表面含水率保持不变,土体内部含水率由上至下依次上升,随后当浸润线达到装置底部后,土体的含水率开始逐渐增大,由非饱和状态过渡至饱和状态,最后当装置底部达到饱和后,土体中的水位开始逐渐上升,各个测点在降雨作用下由下至上依次达到饱和状态;不同土质土体的表面体积含水率均与降雨强度呈线性关系,在相同降雨强度下粉质黏土表面体积含水率大于砂土,不同土质浸润线的下降速度与降雨强度均呈对数函数关系,在相同降雨强度下砂土浸润线下降速度大于粉质黏土;土体基质吸力随着雨水的入渗由上至下逐渐减小,在水位上升过程中基质吸力变化幅度小于降雨入渗过程;在排水过程中,砂土与粉质黏土各高程处的含水率随排水时间的变化规律分别呈幂函数关系和指数函数关系,位置较高测点的含水率下降明显快于位置较低的测点。  相似文献   

4.
王星童  赵维刚 《隧道建设》2011,31(3):315-319
为保证冻结工程及隧道施工的顺利进行,以杭州地铁1号线滨江站至富春路站区间盾构过江隧道联络通道为例,对冻土体无侧限抗压、抗弯强度以及破坏挠度等进行试验研究。根据试验数据分析并结合理论计算可得到以下结论:在-10℃下各土层无侧限抗压强度为2.9~5.9 MPa,强度得到大幅度提高;破坏应变以及破坏挠度满足施工要求;相比之下冻结粉砂的抗压强度最大,淤泥质粉质黏土破坏应变较其他层土大;圆砾和粉砂的抗弯强度增幅明显,达到8 MPa以上,淤泥质粉质黏土和粉质黏土的冻土抗弯强度可以增强到4.0~5.5 MPa;淤泥质粉质黏土、粉质黏土和粉砂的破坏挠度相当,冻结圆砾土的挠度最小。  相似文献   

5.
徐佳伟 《路基工程》2017,(5):100-105
在盾构施工过程中,软黏土地层开挖面的变形机理和稳定性研究仍处于经验阶段。利用离心模型试验,研究了上海黏土地层盾构开挖面稳定性问题。试验分析了盾构开挖过程中开挖面前方土体土压力的变化规律和支护应力与地表沉降的关系。给出了主被动破坏的极限支护应力值以及施工参考范围,这对黏土地层盾构开挖面稳定性控制至关重要。  相似文献   

6.
对三种不同含水率的原状红黏土以及重塑红黏土进行了三轴固结不排水试验,分析非洲热带雨林高液限红黏土的强度及变形特性。试验表明,三种不同含水率的原状红黏土的应力应变曲线表现出明显的应变软化特征,软化现象随着含水率降低而愈发明显,三种不同含水率的重塑红黏土应力应变曲线则表现出应变硬化特征。原状及重塑红黏土的黏聚力及内摩擦角随含水率增加而降低,含水率相同的原状红黏土残余强度值与重塑红黏土强度相近。  相似文献   

7.
王晓艳  陈峰  蔡永昌 《隧道建设》2011,(Z1):192-196
针对无锡地区代表性的原状粉质黏土,模拟基坑开挖不同应力路径条件,探索土体在不同应力路径条件下的应力-应变状态规律,为合理选择本构关系和合适参数提供基础。通过对无锡地区代表性的原状粉质黏土进行不同应力路径的模型试验,将得到的应力应变双曲线图归一化,采用HSS模型对试验进行模拟,并与试验结果作对比。得出:无锡粉质黏土具有明显的非线性特性,不同应力路径对土体的变形及强度有着显著的影响。HSS模型计算土体应力应变时,模型会根据加卸载状态选择相应的模量,能够更好地模拟无锡粉质粘土的不同应力路径对初始模量的影响。  相似文献   

8.
为了研究降雨条件下包盖法填筑炭质泥岩路堤稳定性,该文基于饱和-非饱和状态路堤渗流数学模型与稳定性计算理论,采用有限元数值方法对降雨条件下包盖法填筑炭质泥岩路堤渗流特征及稳定性进行了计算。得到如下结论:(1)降雨条件下,坡面附近包边土体积含水率升降的幅度与高程成正比,与距坡面的距离成反比;(2)降雨过程中,黏土包边方案路堤内部土体体积含水率、孔隙水压力的变化幅度最小,粉质黏土包边方案次之,粉土包边方案最大;(3)降雨条件下,路堤内部土体体积含水率、孔隙水压力的变化幅度与包边土体宽度成反比;(4)降雨期间,黏土包边方案路堤安全系数最大,粉质黏土包边方案次之,粉土包边方案最小;(5)降雨开始后,路堤安全系数不断降低,降雨停止后,路堤安全系数缓慢升高,路堤安全系数与包边宽度成正比。  相似文献   

9.
通过对黏土质砾土样进行室内物理力学试验,研究了黏土质砾抗剪强度和承载强度的主要影响因素。研究表明,细粒土含量、含水率对黏土质砾土样的黏聚力、内摩擦角和加州承载比CBR强度有显著影响。含水率研究范围覆盖最佳含水率和天然含水率。随着细粒土含量增多,黏聚力逐渐增大,而内摩擦角逐渐减小;随含水率增大,黏聚力和内摩擦角均减小,细粒含量增多对黏聚力下降明显,而对内摩擦角影响较小;细粒土含量越多,CBR越小;当含水率超过最大CBR含水率时,击实功效果随含水率增大逐渐减弱,细粒土含量越多,不同击实功之间差异性越小。建立了黏聚力、内摩擦角及CBR同含水率和细粒土含量的关系,提出的经验公式可为现场填料的强度预估提供理论依据。  相似文献   

10.
以朔黄铁路广泛应用的粉质黏土填料为研究对象,采用杠杆仪法测定粉质黏土的回弹模量,研究含水率和干密度对重载铁路路基填料回弹模量的影响。研究表明:路基土体的回弹模量随干密度的增大而增大,随含水率的增大而减小;相比于干密度,土体的回弹模量对于含水率更敏感;提出可考虑含水率和干密度影响的路基基床土体弹性模量预估模型;通过实际铁路路基监测数据,验证模型在预估路基弹性变形方面的有效性。研究结果对于在外荷载和雨水联合作用下,进一步认识粉质黏土填料路基的弹性变形特性、状态评估与加固强化设计,具有参考价值。  相似文献   

11.
通过珠三角地区3种典型土层,即:淤泥质土、粉细砂以及红粘土进行室内常规三轴试验与真三轴卸荷力学试验,分析探讨了不同应力路径条件下土体的力学特性,得出了侧向卸荷条件下土体的抗剪强度指标大幅度降低,且有效应力指标降低幅度大于总应力指标,粉细砂抗剪强度指标降低幅度明显大于淤泥质土与红粘土的研究结论,并以此提出珠三角地区超大软土深基坑工程设计与施工应充分考虑土体卸荷力学效应的建议。  相似文献   

12.
对于夹泥砾石土,在应力、颗粒组成、含水率等因素影响下,其变形特性非常复杂。针对重庆机场道路工程填筑中所用的压实砾石土,通过中型样三轴试验开展了一系列力学特性试验研究,重点分析了含石量与含泥量的变化对于压实砾石土力学性能的影响,及不固结不排水(UU)、固结不排水(CU)、固结排水(CD)3种条件下的抗剪强度与变形特性;同时研究了UU条件下,不同制样含水率对压实砾石土的抗剪强度的影响。试验结果表明:压实砾石土在低围压条件下表现出强烈的剪胀性;UU三轴压缩试验条件下,小含泥量的压实砾石土的强度取决于大粒径颗粒间的咬合力,与含石量成正比;初始拌和含水率对压实砾石土UU强度的影响很大,颗粒粒组中的泥粒在高于最优含水率下易产生滑动,影响其应力-应变性状并导致其抗剪强度大幅降低;饱和固结后,压实砾石土的强度与含石量并没有直接的联系,高含石量并不代表高强度,合理的颗粒级配是决定试样CU,CD强度的重要因素;压实砾石土中含泥量增加会导致其抗剪强度的降低。另外,含石量和含泥量对压实砾石土的临界状态影响不大,同种矿物成分、不同颗粒组成的压密砾石土在CU,CD试验下的临界应力比为1.73。  相似文献   

13.
对宁启铁路中某段现场的粉质黏土进行室内试验,采用的水泥掺入比分别为4%,7%,10%,13%。对水泥改良土样进行分组击实、养护及无侧限抗压强度试验,获得了不同水泥掺入比改良土的击实特性及力学特性。试验结果表明:水泥掺入比对改良土的最优含水率及最大干密度影响不大,可依据原路基粉质黏土填料的压实标准作为控制水泥改良粉质黏土的压实标准。水泥改良粉质黏土的最优水泥掺入比是10%,7天的养护期即可满足现场施工挤密桩加固不低于1 MPa的要求。  相似文献   

14.
通过对压实度在95%的粉质黏土的室内动三轴试验,深入分析了重塑粉质黏土的动孔压的发展规律、动变形的变化规律、动强度参数和累积塑性变形,以掌握动应力、围压变化对动孔压的影响规律。研究表明:在实际路基工程中降低路基顶部动应力幅值,提高路基压实度和适当的边坡防护,可以有效地减小路基累积塑性变形和稳定。依据累积变形曲线可以判断低液限粉质黏土路基土在循环荷载作用下的稳定情况,可为路基本体在动荷载作用下的永久变形计算和预测提供参考。  相似文献   

15.
为了研究水平剪切应力对土体动力特性的影响,采用多向循环单剪仪模拟地震时土体所受的水平剪切作用,对温州饱和黏土进行一系列不排水剪切试验,分析在双向应力幅值为1∶2时,当X向和Y向加载波形的相位差分别为0°,30°,60°和90°,循环应力比分别为0.14,0.20,0.25时,相位差和循环应力比对土体动应变、动孔压、动剪切强度及剪切后再固结变形特性的影响。试验结果表明:在循环应力比较小时,应变和孔压比发展较慢,且再固结后产生的沉降也较小;当循环应力比为0.20时,相位差的增大会加快应变和孔压比的增长,X向应变的发展会受到Y向应变的影响,且相位差越大,土体达到破坏所需的圈数越少;当循环应力比为0.25时,相位差对应变、孔压比和强度的影响不明显;循环次数相同,随着循环应力比的增加,应变及孔压的发展速度增快;在一定的循环应力比下相位差越大,双向所产生的应变也就越大,且X向应变的发展会受到Y向应变的影响;当循环应力比为0.14时,再固结后的轴向变形很小;当循环应力比为0.20时,相位差越大产生的轴向变形也越大;当循环应力比为0.25时,相位差对再固结后的轴向变形影响不大。  相似文献   

16.
砂质粉黏土是一种广泛存在于富水区域的土,容易受到地下水位的升降和季节变换的影响。为得到满足工程需要的设计参数,了解合肥南淝河附近轨道交通东门换乘站工程的砂质粉黏土在干湿循环下的强度变形特征,基于室内直剪试验,获得了砂质粉黏土经历干湿循环后的抗剪强度指标及其变形情况。试验结果表明:重塑砂质粉黏土在经历干湿循环后,抗剪强度先增大后减小,发生了衰减,最终趋于稳定,且稳定值小于初始值;剪切破坏滑动面由较为完整变为有明显的裂缝而丧失完整性。从机制上分析了剪切强度变化的原因,认为重塑土的损伤变量在干湿循环时开始了演化,导致土体发生强度衰减。  相似文献   

17.
贵阳红粘土抗剪强度与含水量关系的探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
红粘土是一种性质特殊的土。为探讨影响红粘土强度的各种因素,通过不同含水量的贵阳红粘土试样进行了一系列室内直剪试验,探讨含水量对红粘土抗剪强度参数的影响,并从红粘土结构性上作出了解释。基于Matlab软件采用最小二乘法原理,建立了粘聚力、内摩擦角与含水量的关系表达式,为工程建设实践提供参考。  相似文献   

18.
为研究黄土在主应力轴循环旋转条件下的变形特性,采用空心圆柱扭剪仪(HCA)开展了2种不同应力路径下的扭剪试验。第1种应力路径为保持主应力轴方向不变,改变偏应力大小,研究黄土在不同主应力轴方向角α和不同中主应力系数b下的变形特性;第2种应力路径为保持偏应力大小不变,改变主应力轴方向,研究主应力轴循环旋转周期对黄土性状的影响。试验结果表明:土样剪切强度与中主应力系数b、主应力轴方向角α相关,当b相同,α=30°时土样剪切强度最大,α=60°时土样剪切强度略大于α=45°时;α相同时,剪切强度>b=1时的剪切强度>b=0.5时的剪切强度;纯主应力轴旋转会使土体产生塑形应变,并且随着旋转周期的增加,土体产生的塑形应变将不断累积。  相似文献   

19.
坡积体是由坡面细流的侵蚀、搬运和沉积作用形成的一种土石混合体,含水率对其力学强度特性有重要影响。以陕西汉中略阳坡积体为研究对象,通过大型直剪试验分析坡积体重塑样在不同含水率条件下的应力应变特性、剪切"跳跃"特性、体积应变特性及抗剪强度参数变化规律。调研结果表明:略阳地区坡积体具有分布广、规模大、成因和结构构造复杂等分布特征,物质组成、结构构造和降雨是影响其工程特性的主要因素。室内大型直剪试验结果表明:含水率较低试样的应力-应变曲线可分为线弹性、局部剪切和剪切破坏3个阶段,而含水率较高试样只有前2个剪切阶段;低含水率试样的剪切"跳跃"现象主要发生在剪切初期,高含水率试样主要发生在剪切后期;低含水率试样在低应力下整体表现为剪胀,随着正应力的增加,剪胀量变小,而高含水率试样则表现为剪缩;高应力条件下试样全部表现为剪缩,且剪缩量随着含水率的增加而增大;剪切试样的抗剪强度整体上都是随着含水率的增大而降低,但降低幅度不大;试样的抗剪强度参数用内摩擦角和"等效黏聚力"表征,"等效黏聚力"随着含水率的增加先增大后减小,而内摩擦角则先减小后增大;土石混合填料抗剪强度曲线呈双线性变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号