共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
4.
为了考察含气量对CRTSⅠ型水泥乳化沥青砂浆性能的影响,分别制备出含气量3%,6%,9%,12%,15%的水泥乳化沥青砂浆,并对其膨胀率、吸水率、抗压强度、弹性模量、超声波传播时间、抗冻性能等进行研究。结果表明:随着含气量的增大,砂浆的膨胀率逐渐降低,吸水率逐渐增大,其中当含气量>12%时,砂浆吸水率增大幅度明显;随着含气量的增大,砂浆的抗压强度、弹性模量略有降低、超声波传播时间变长;砂浆的抗冻性能随含气量的增大先增强后降低。 相似文献
5.
在高弹模水泥沥青砂浆的配制试验研究中,乳化沥青中掺加葡萄糖酸钠,可使乳化沥青满足水泥适应性的要求,但会导致CA砂浆1 d强度不足;掺加Cacl2可适当提高CA砂浆1 d强度,但会增加CA砂浆流动度经时损失;乳化沥青中掺加JSS-1或SJQA-1高效减水剂,均能显著提高乳化沥青的水泥的适应性,该两种高效减水剂组合所配制的CA砂浆,可同时满足砂浆用水量、砂浆工作性能和砂浆1 d强度指标的要求. 相似文献
6.
7.
8.
基于CRTS(China railway track system)Ⅰ型板式无砟轨道水泥乳化沥青砂浆的施工特性和使用条件,砂浆需具有优良的施工性能、力学性能和耐久性能。通过分析砂浆5部分组成(水泥和细骨料、乳化沥青、聚合物乳液、铝粉和膨胀剂、消泡剂和引气剂)对其性能的影响。研究结果表明:乳化沥青和水灰比是主要影响因素。 相似文献
9.
10.
水泥乳化沥青质量控制是决定 CRTSⅡ型板式无砟轨道结构耐久性和平顺性的关键,搅拌工艺的合理性决定水泥乳化沥青质量。水泥乳化沥青的搅拌工艺包含水泥乳化沥青砂浆原材料的投料顺序、搅拌转速、搅拌时间等因素,其微小变化会对 CA砂浆最终性能造成很大影响。本文通过施工现场中的水泥乳化沥青砂浆搅拌试验,测试了不同搅拌工艺下水泥乳化沥青砂浆的流动度、扩展度与含气量,并结合水泥乳化沥青砂浆灌注揭板效果,最终选出了高速铁路CRTSⅡ型板水泥乳化沥青砂浆的最优搅拌工艺,确保了工程质量。 相似文献
11.
选择了4种不同分子量的聚丙烯酰胺(400万、600万、800万、1000万)作为絮凝剂,对每种聚丙烯酰胺在不同掺量下对水泥浆体流变性能的影响进行了研究。结果表明,浆体的扩展度、屈服剪切应力以及粘度都存在着一定的规律性;提出了掺量临界点和系统不稳定区域的概念。并对这一现象产生的原因进行了分析。 相似文献
12.
为研究纤维对CA砂浆抗塑性开裂性能的影响规律,采用自制开裂试验装置结合图像分析法研究了纤维品种、掺量及长径比等参数对CA砂浆抗塑性开裂性能的影响。结果表明,PVA纤维对CA砂浆抗裂性的影响最为显著,并略优于PET纤维,PP纤维最次;三角形截面的PP纤维抗裂性优于圆形截面的PP纤维;CA砂浆的抗塑性开裂性能随纤维掺量的增大逐渐提高,当体积掺量超过0.14%后,抗裂性增幅趋缓;纤维的长径比对其抗裂性有一定影响,直径相同的情况下,12 mm及3 mm长的PP纤维抗裂性优于6 mm长的PP纤维。研究结果可为CA砂浆用纤维的技术标准提供一定的理论与技术支撑,具有一定的理论和工程意义。 相似文献
13.
为研究纤维长度(长径比)对高性能砂浆力学性能的影响,在保持纤维总掺量(质量掺量5%)不变的情况下采用不同长度的短切耐碱玻纤分别对高性能砂浆进行增强,并对增强后的砂浆基体分别进行抗压、抗折和劈拉性能对比试验。结果表明,砂浆基体采用短切纤维增强后的延性明显提高,受压、劈拉破坏时试件呈现裂而不碎的破坏形态,其抗压、抗折和劈拉强度比未掺纤维时总体提高40%左右;纤维长度对砂浆力学性能的增强效果影响明显,砂浆的抗压、抗折和劈拉强度提高幅度随纤维长度的增加而增加,掺入12 mm耐碱玻纤砂浆基体的抗压、抗折及劈拉强度提高幅度比掺入6 mm耐碱玻纤时分别提高约18%、5%和19%;不同长度的纤维混杂后对砂浆力学性能的改善呈一定的正相关性。 相似文献
14.
15.
采用弹性系统动力学总势能不变值原理及形成矩阵的对号入座法则建立车辆-纵连板式无砟轨道空间耦合振动模型。根据已建模型建立CA砂浆脱空的分析模型,分析CA砂浆脱空对车轨动力响应的影响,分析脱空长度以及行车速度对纵连板式无砟轨道车轨动力响应的影响。研究结果表明:砂浆脱空后,当砂浆脱空长度大于1.2m后,随着脱空长度的增大,车辆的动力响应也随着增大,当脱空长度达到1.8m时,轮重减载率达到0.98,车体加速度达到1.64m/s2,均已超过限值。砂浆脱空后,随着行车速度的增大,系统动力响应也随着增大。当脱空长度为1.8m时,车体加速度均已超过限值,所以考虑行车舒适性建议控制脱空长度不超过1.8m。 相似文献
16.
为了解决火车用废旧闸瓦对环境的污染,将废旧闸瓦摩擦回收料作为水泥基超细掺合料,研究废旧闸瓦摩擦回收料对水泥砂浆抗碳化性能的影响。利用压汞仪测试了不同工况下废旧闸瓦摩擦回收料砂浆的孔结构特征;采用SEM分析了废旧闸瓦摩擦回收料砂浆的界面过渡区特征。分析结果表明:(1)随着废旧闸瓦摩擦回收料掺量的增加及水灰比的减小,砂浆的强度均随之提高;(2)当废旧闸瓦摩擦回收料掺量在5%时,抗碳化性能最差;回收料掺量在30%时,效果最好;(3)压汞结果显示,含20%、30%废旧闸瓦摩擦回收料的砂浆,其大孔体积明显减少;(4)SEM结果表明,适量的废旧闸瓦摩擦回收料能优化砂浆的界面结构。 相似文献
17.
为了研究石灰石粉细度、掺量及浆体的静置时间对水泥(Cement,简称C)-石灰石粉(Limestone Powder,简称LP)浆体流变性能的影响,采用Anton Paar MCR 102型旋转流变仪,测试C-LP浆体中400目(LP1)和800目(LP2)LP对流变曲线的影响。采用Herachel-Bulkey(H-B)模型及Bingham模型拟合经时流变曲线得到浆体屈服应力、流变指数及塑性黏度等参数,并通过计算剪切测试下滞回环面积以表征浆体的触变性能。同时,通过Andreasen颗粒紧密堆积模型计算得出体系中颗粒分布模数,基于颗粒体积分数计算体系中固体颗粒总比表面积,并对体系水化放热过程进行分析,从而进一步解释石灰石粉不同细度、掺量及不同静置时间对浆体流变行为的影响机制。研究结果表明,随石灰石粉掺量或细度的增大,浆体体系中固体颗粒堆积密实程度增大;石灰石粉的细度比掺量对水泥水化放热的影响程度更大。增加LP1掺量,浆体屈服应力及塑性黏度下降;增加LP2掺量,浆体屈服应力及塑性黏度上升;静置时间的延长使浆体屈服应力及塑性黏度均增大;掺入适量(质量分数为20%~50%)LP1或LP2均对... 相似文献
18.
《高速铁路技术》2015,(2)
CA砂浆是高速铁路无砟轨道的关键工程材料之一,其性能与高速铁路的运营、维护密切相关。文章分别采用大理石、方解石、玄武岩、花岗岩、石英岩作为砂的原料,研究了不同砂的CA砂浆力学性能。研究表明,砂的材质对CA砂浆的力学性能有较大的影响,对于大理石、方解石类的碳酸钙质砂,使用阴离子乳化沥青拌制的CA砂浆其强度与耐水性均高于阳离子乳化沥青;而对于玄武岩、花岗岩、石英岩类的二氧化硅质砂,其规律恰好相反,这可能与砂所带电荷类型有关;研究还发现不管是阳离子乳化沥青还是阴离子乳化沥青,采用大理石作为砂原料时,其强度均远低于其他岩石,对提高无砟轨道耐久性等均有一定的指导意义。 相似文献
19.
20.
水泥乳化沥青砂浆主要填充在CRTS Ⅰ型混凝土轨道板和水硬性混凝土承载垫层之间,对无砟轨道道床起到一定的减振、消噪、调平等作用.通过试验,研究细骨料的级配、聚合物乳液的掺入量变化对水泥乳化沥青砂浆性能的影响,观察水泥乳化沥青砂浆性能的变化趋势,提出现场无砟轨道板水泥乳化沥青砂浆应用的最佳参数. 相似文献