首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we present a route-level patronage model that incorporates transit demand, supply and inter-route effects in a simultaneous system. The model is estimated at the route-segment level by time of day and direction. The results show strong simultaneity among transit demand, supply and competing routes. Transit ridership is affected by the level of service, which in turn is determined by current demand and ridership in the previous year. The model demonstrates that a service improvement has a twofold impact on ridership; it increases ridership on the route with service changes, but it also reduces the ridership on competing routes so that the net ridership change is small. The model is thus useful for both system-level analysis and route-level service planning.  相似文献   

2.
Ridership estimation is a critical step in the planning of a new transit route or change in service. Very often, when a new transit route is introduced, the existing routes will be modified, vehicle capacities changed, or service headways adjusted. This has made ridership forecasts for the new, existing, and modified routes challenging. This paper proposes and demonstrates a procedure that forecasts the ridership of all transit routes along a corridor when a new bus rapid transit (BRT) service is introduced and existing regular bus services are adjusted. The procedure uses demographic data along the corridor, a recent origin–destination survey data, and new and existing transit service features as inputs. It consists of two stages of transit assignment. In the first stage, a transit assignment is performed with the existing transit demand on the proposed BRT and existing bus routes, so that adjustments to the existing bus services can be identified. This transit assignment is performed iteratively until there is no adjustment in transit services. In the second stage, the transit assignment is carried out with the new BRT and adjusted regular bus services, but incorporates a potential growth in ridership because of the new BRT service. The final outputs of the procedure are ridership for all routes and route segments, boarding and alighting volumes at all stops, and a stop‐by‐stop trip matrix. The proposed ridership estimation procedure is applicable to a new BRT route with and without competing regular bus routes and with BRT vehicles traveling in dedicated lanes or in mixed traffic. The application of the proposed procedure is demonstrated via a case study along the Alameda Corridor in El Paso, Texas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Estimation of ridership on a new transit system in an area where no comparable service existed before is a difficult task of transit planning. Traditional modal split models cannot be used in these cases, because no data or basis for developing a new model or adjusting a “borrowed” model are available. One of the techniques which can be used in this type of situation, is to perform a “concept test” based on public opinion. This approach, however, is plagued with the phenomenon of non-commitment bias of interviewees, and tends to overestimate the ridership. A new fixed route and fixed schedule transit service in Johnson City in Tennessee provided a rare opportunity to perform an investigation on the non-commitment bias through “before” and “after” surveys. The analysis of the non-commitment and actual responses of a sample of residents revealed substantial bias. Overall, the non-commitment ridership estimate was about twice (100% greater than) the actual ridership.:It was also observed that the bias was higher for persons owning automobiles, and for work and shopping trips.  相似文献   

4.
In the past few years, numerous mobile applications have made it possible for public transit passengers to find routes and/or learn about the expected arrival time of their transit vehicles. Though these services are widely used, their impact on overall transit ridership remains unclear. The objective of this research is to assess the effect of real-time information provided via web-enabled and mobile devices on public transit ridership. An empirical evaluation is conducted for New York City, which is the setting of a natural experiment in which a real-time bus tracking system was gradually launched on a borough-by-borough basis beginning in 2011. Panel regression techniques are used to evaluate bus ridership over a three year period, while controlling for changes in transit service, fares, local socioeconomic conditions, weather, and other factors. A fixed effects model of average weekday unlinked bus trips per month reveals an increase of approximately 118 trips per route per weekday (median increase of 1.7% of weekday route-level ridership) attributable to providing real-time information. Further refinement of the fixed effects model suggests that this ridership increase may only be occurring on larger routes; specifically, the largest quartile of routes defined by revenue miles of service realized approximately 340 additional trips per route per weekday (median increase of 2.3% per route). Although the increase in weekday route-level ridership may appear modest, on aggregate these increases exert a substantial positive effect on farebox revenue. The implications of this research are critical to decision-makers at the country’s transit operators who face pressure to increase ridership under limited budgets, particularly as they seek to prioritize investments in infrastructure, service offerings, and new technologies.  相似文献   

5.
Utilizing daily ridership data, literature has shown that adverse weather conditions have a negative impact on transit ridership and in turn, result in revenue loss for the transit agencies. This paper extends this discussion by using more detailed hourly ridership data to model the weather effects. For this purpose, the daily and hourly subway ridership from New York City Transit for the years 2010–2011 is utilized. The paper compares the weather impacts on ridership based on day of week and time of day combinations and further demonstrates that the weather’s impact on transit ridership varies based on the time period and location. The separation of ridership models based on time of day provides a deeper understanding of the relationship between trip purpose and weather for transit riders. The paper investigates the role of station characteristics such as weather protection, accessibility, proximity and the connecting bus services by developing models based on station types. The findings indicate substantial differences in the extent to which the daily and hourly models and the individual weather elements are able to explain the ridership variability and travel behavior of transit riders. By utilizing the time of day and station based models, the paper demonstrates the potential sources of weather impact on transit infrastructure, transit service and trip characteristics. The results suggest the development of specific policy measures which can help the transit agencies to mitigate the ridership differences due to adverse weather conditions.  相似文献   

6.
This paper examines the factors affecting changes in transit ridership in Portland, Oregon, during the period 1971 through 1982. A time-series methodology is used to investigate the effects of service level, travel costs, and market size at the system, sector, and route levels. Transfer function and multiple time-series models are compared. Intervention analysis is used to determine the impact of 81 service-level changes and 5 fare changes. A comparison is made of the elasticities estimated for these changes with elasticities developed from other studies.  相似文献   

7.
Fare and service frequency significantly affect transit users’ willingness to ride, as well as the supplier's revenue and operating costs. To stimulate demand and increase productivity, it is desirable to reduce the transfer time from one route to another via efficient service coordination, such as timed transfer. Since demand varies both temporally and spatially, it may not be cost-effective to synchronize vehicle arrivals on all connecting routes at a terminal. In this paper, we develop a schedule coordination model to optimize fare and headway considering demand elasticity. The headway of each route is treated as an integer-multiple of a base common headway. A discounted (reduced) fare is applied as an incentive to encourage ridership and, thus, stimulate public transit usage. The objective of the proposed coordination model is used to maximize the total profit subject to the service constraint. A numerical example is given to demonstrate the applicability of the proposed model. The results show that the optimized fare and headway may be carefully applied to yield the maximum profit. The relationship between the decision variables and model parameters is explored in the sensitivity analysis.  相似文献   

8.
Flex‐route transit brings together the low cost operability of fixed‐route transit with the flexibility of demand responsive transit, and in recent years, it has become the most popular type of flexible transit service. In this paper, a methodology is proposed to help planners make better decisions regarding the choice between a conventional fixed‐route and a flex‐route policy for a specific transit system with a varying passenger demand. A service quality function is developed to measure the performance of transit systems, and analytical modeling and simulations are used to reproduce transit operation under the two policies. To be closer to reality, two criteria are proposed depending on the processing of rejected requests in the assessment of the service quality function for flex‐route services. In various scenarios, critical demand densities, which represent the switching points between the two competing policies, are derived in a real‐world transit service according to the two criteria. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
An analysis of Metro ridership at the station-to-station level in Seoul   总被引:2,自引:0,他引:2  
While most aggregate studies of transit ridership are conducted at either the stop or the route level, the present study focused on factors affecting Metro ridership in the Seoul metropolitan area at the station-to-station level. The station-to-station analysis made it possible to distinguish the effect of origin factors on Metro ridership from that of destination factors and to cut down the errors caused by the aggregation of travel impedance-related variables. After adopting two types of direct-demand patronage forecasting models, the multiplicative model and the Poisson regression model, the former was found to be superior to the latter because it clearly identified the negative influences of competing modes on Metro ridership. Such results are rarely found with aggregate level analyses. Moreover, the importance of built environment in explaining Metro demand was confirmed by separating built environment variables for origin and destination stations and by differentiating ridership by the time of day. For morning peak hours, the population-related variables of the origin stations played a key role in accounting for Metro ridership, while employment-related variables prevailed in destination stations. In evening peak hours, both employment- and population-related variables were significant in accounting for the Metro ridership at the destination station. This showed that a significant number of people in the Seoul metropolitan area appear to take various non-home-based trips after work, which is consistent with the results from direct household travel surveys.  相似文献   

10.
Abstract

Providing efficient public transportation has been recognized as a potential way of alleviating congestion, improving mobility, mitigating air pollution, and reducing energy consumption. Many people use public transportation systems for their daily commute, while others use different transportation modes (e.g. cars, taxis, carpools, etc.). Inexpensive fares with good transit service encourages ridership, and the resulting revenue may be used to provide better service. Optimization of transit service frequency and its associated fare structure is desirable in order to increase revenue at reasonable transit operating expenditure. The objective of the study reported here is to maximize profit subject to service capacity constraint, while elastic demand is considered. The solution methodology is developed and applied to solve the profit maximization problem in a case study based on Newark, NJ, USA. Numerical results, including optimal solutions and sensitivity analyses, are presented. It is found that an optimal temporal headway and differential fare structure that maximizes total profit for the studied subway system can be efficiently solved.  相似文献   

11.
This paper presents an integrated transit-oriented travel demand modeling procedure within the framework of geographic information systems (GIS). Focusing on transit network development, this paper presents both the procedure and algorithm for automatically generating both link and line data for transit demand modeling from the conventional street network data using spatial analysis and dynamic segmentation. For this purpose, transit stop digitizing, topology and route system building, and the conversion of route and stop data into link and line data sets are performed. Using spatial analysis, such as the functionality to search arcs nearest from a given node, the nearest stops are identified along the associated links of the transit line, while the topological relation between links and line data sets can also be computed using dynamic segmentation. The advantage of this approach is that street map databases represented by a centerline can be directly used along with the existing legacy urban transportation planning systems (UTPS) type travel modeling packages and existing GIS without incurring the additional cost of purchasing a full-blown transportation GIS package. A small test network is adopted to demonstrate the process and the results. The authors anticipate that the procedure set forth in this paper will be useful to many cities and regional transit agencies in their transit demand modeling process within the integrated GIS-based computing environment.  相似文献   

12.
Public subsidy of transit services has increased dramatically in recent years, with little effect on overall ridership. Quite obviously, a clear understanding of the factors influencing transit ridership is central to decisions on investments in and the pricing and deployment of transit services. Yet the literature about the causes of transit use is quite spotty; most previous aggregate analyses of transit ridership have examined just one or a few systems, have not included many of the external, control variables thought to influence transit use, and have not addressed the simultaneous relationship between transit service supply and consumption. This study addresses each of these shortcomings by (1) conducting a cross-sectional analysis of transit use in 265 US urbanized areas, (2) testing dozens of variables measuring regional geography, metropolitan economy, population characteristics, auto/highway system characteristics, and transit system characteristics, and (3) constructing two-stage simultaneous equation regression models to account for simultaneity between transit service supply and consumption. We find that most of the variation in transit ridership among urbanized areas – in both absolute and relative terms – can be explained by factors outside of the control of public transit systems: (1) regional geography (specifically, area of urbanization, population, population density, and regional location in the US), (2) metropolitan economy (specifically, personal/household income), (3) population characteristics (specifically, the percent college students, recent immigrants, and Democratic voters in the population), and (4) auto/highway system characteristics (specifically, the percent carless households and non-transit/non-SOV trips, including commuting via carpools, walking, biking, etc.). While these external factors clearly go a long way toward determining the overall level of transit use in an urbanized area, we find that transit policies do make a significant difference. The observed range in both fares and service frequency in our sample could account for at least a doubling (or halving) of transit use in a given urbanized area. Controlling for the fact that public transit use is strongly correlated with urbanized area size, about 26% of the observed variance in per capita transit patronage across US urbanized areas is explained in the models presented here by service frequency and fare levels. The observed influence of these two factors is consistent with both the literature and intuition: frequent service draws passengers, and high fares drive them away.  相似文献   

13.
Transit ridership is usually sensitive to fares, travel times, waiting times, and access times, among other factors. Therefore, the elasticities of demand with respect to such factors should be considered in modeling bus transit services and must be considered when maximizing net benefits (i.e. “system welfare” = consumer surplus + producer surplus) rather just minimizing costs. In this paper welfare is maximized with elastic demand relations for both conventional (fixed route) and flexible-route services in systems with multiple dissimilar regions and periods. As maximum welfare formulations are usually too complex for exact solutions, they have only been used in a few studies focused on conventional transit services. This limitation is overcome here for both conventional and flexible transit services by using a Real Coded Genetic Algorithm to solve such mixed integer nonlinear welfare maximization problems with constraints on capacities and subsidies. The optimized variables include service type, zone sizes, headways and fares. We also determine the maximum welfare threshold between optimized conventional and flexible services) and explore the effects of subsidies. The proposed planning models should be useful in selecting the service type and optimizing other service characteristics based on local geographic characteristics and financial constraints.  相似文献   

14.
15.
This paper summarizes and updates the findings from an earlier study by the same authors of transit systems in Houston (all bus) and San Diego (bus and light rail). Both systems achieved unusually large increases in transit ridership during a period in which most transit systems in other metropolitan areas were experiencing large losses. Based on ridership models estimated using cross section and time series data, the paper quantifies the relative contributions of policy variables and factors beyond the control of transit operators on ridership growth. It is found that large ridership increases in both areas are caused principally by large service increases and fare reductions, as well as metropolitan employment and population growth. In addition, the paper provides careful estimates of total and operating costs per passenger boarding and per passenger mile for Houston's bus operator and San Diego's bus and light rail operators. These estimates suggest that the bus systems are more cost-effective than the light rail system on the basis of total costs. Finally, the paper carries out a series of policy simulations to analyze the effects of transit funding levels and metropolitan development patterns on transit ridership and farebox recovery ratio.  相似文献   

16.
This paper presents two time series regression models, one in linear form and the other in logarithmic form, to estimate the monthly ridership of a single urban rail rapid transit line. The model was calibrated for a time period of about six and a half years (from 1978–1984) based on ridership data provided by a transit authority, gasoline prices provided by a state energy department, and other data.The major findings from these models are: (1) seasonal variations of ridership are –6.26%, or –6.20% for the summer period, and 4.77%, or 4.62% for the October period; (2) ridership loss due to a station closure is 2.46% or 2.41%; and (3) elasticities of monthly ridership are –0.233 or –0.245 with respect to real fare, 0.113 or 0.112 with respect to real gasoline price, and 0.167 or 0.185 with respect to real bridge tolls for the competing automobile trips. Such route specific application results of this inexpensive approach provide significant implications for policymaking of individual programs in pricing, train operation, budgeting, system changes, etc., as they are in the case reported herein and would be in many other cities.  相似文献   

17.
The recent volatility in gasoline prices and the economic downturn have made the management of public transportation systems particularly challenging. Accurate forecasts of ridership are necessary for the planning and operation of transit services. In this paper, monthly ridership of the Metropolitan Tulsa Transit Authority is analyzed to identify the relevant factors that influence transit use. Alternative forecasting models are also developed and evaluated based on these factors—using regression analysis (with autoregressive error correction), neural networks, and ARIMA models—to predict transit ridership. It is found that a simple combination of these forecasting methodologies yields greater forecast accuracy than the individual models separately. Finally, a scenario analysis is conducted to assess the impact of transit policies on long-term ridership.  相似文献   

18.
Information produced by travel demand models plays a large role decision making in many metropolitan areas, and San Francisco is no exception. Being a transit first city, one of the most common uses for San Francisco??s travel model SF-CHAMP is to analyze transit demand under various circumstances. SF-CHAMP v 4.1 (Harold) is able to capture the effects of several aspects of transit provision including headways, stop placement, and travel time. However, unlike how auto level of service in a user equilibrium traffic assignment is responsive to roadway capacity, SF-CHAMP Harold is unable to capture any benefit related to capacity expansion, crowding??s effect on travel time nor or any of the real-life true capacity limitations. The failure to represent these elements of transit travel has led to significant discrepancies between model estimates and actual ridership. Additionally it does not allow decision-makers to test the effects of policies or investments that increase the capacity of a given transit service. This paper presents the framework adopted into a more recent version of SF-CHAMP (Fury) to represent transit capacity and crowding within the constraints of our current modeling software.  相似文献   

19.
The objective of this research was to develop a simple transit ridership estimation model system for short-range planning. The main feature of the model system is that it exploits knowledge of transit link volumes which are obtained readily from on-off counts. Extensive use is made of default values for model parameters, taken directly from the transportation literature. The remaining parameters can be derived easily from generally available land-use and socioeconomic data. Expensive household surveys and time-consuming model calibrations are not required. A sequence of simple trip generation, trip distribution and modal split models generate trip-purpose specific transit trip tables, denoted as “trial” trip tables. These trip tables and observed transit link volumes are used in a linear programming model which serves as a correction mechanism. The gain in accuracy is achieved by using the ridership information contained in the transit link volumes. The corrected trip tables may be used in a pivot-point analysis to estimate changes in ridership and revenue. The results of a test application of the model system indicate that it can generate accurate ridership estimates when reliable transit link volumes are available from on-off counts, and when the trial transit trip tables as derived from the first three component models are reasonably accurate.  相似文献   

20.
This paper aims at investigating the over-prediction of public transit ridership by traditional mode choice models estimated using revealed preference data. Five different types of models are estimated and analysed, namely a traditional Revealed Preference (RP) data-based mode choice model, a hybrid mode choice model with a latent variable, a Stated Preference (SP) data-based mode switching model, a joint RP/SP mode switching model, and a hybrid mode switching model with a latent variable. A comparison of the RP data-based mode choice model with the mode choice models including a latent variable showed that the inclusion of behavioural factors (especially habit formation) significantly improved the models. The SP data-based mode switching models elucidated the reasons why traditional models tend to over-predict transit ridership by revealing the role played by different transit level-of-service attributes and their relative importance to mode switching decisions. The results showed that traditional attributes (e.g. travel cost and time) are of lower importance to mode switching behaviour than behavioural factors (e.g. habit formation towards car driving) and other transit service design attributes (e.g. crowding level, number of transfers, and schedule delays). The findings of this study provide general guidelines for developing a variety of transit ridership forecasting models depending on the availability of data and the experience of the planner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号