首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The TRANSYT program is one of the most extensively used programs for the production of signal coordination plans. The impediments to the development of signal coordination plans are associated with data collection and data input. GIS offers a natural solution to these problems. This paper presents the SIGTRAF system, which uses GIS-T technology for the production of coordination plans using TRANSYT. This system is able to extract topological information from the GIS-T, thus simplifying the process of coding TRANSYT models. A case study was performed, providing insight on how the GIS-T’s thematic mapping capabilities can be used to visually compare different timing plans.  相似文献   

2.
This paper presents an alternative planning framework to model and forecast network traffic for planning applications in small communities, where limited resources debilitate the development and applications of the conventional four-step travel demand forecasting model. The core idea is to use the Path Flow Estimator (PFE) to estimate current and forecast future traffic demand while taking into account of various field and planning data as modeling constraints. Specifically, two versions of PFE are developed: a base year PFE for estimating the current network traffic conditions using field data and planning data, if available, and a future year PFE for predicting future network traffic conditions using forecast planning data and the estimated base year origin–destination trip table as constraints. In the absence of travel survey data, the proposed method uses similar data (traffic counts and land use data) as a four-step model for model development and calibration. Since the Institute of Transportation Engineers (ITE) trip generation rates and Highway Capacity Manual (HCM) are both utilized in the modeling process, the analysis scope and results are consistent with those of common traffic impact studies and other short-range, localized transportation improvement programs. Solution algorithms are also developed to solve the two PFE models and integrated into a GIS-based software called Visual PFE. For proof of concept, two case studies in northern California are performed to demonstrate how the tool can be used in practice. The first case study is a small community of St. Helena, where the city’s planning department has neither an existing travel demand model nor the budget for developing a full four-step model. The second case study is in the city of Eureka, where there is a four-step model developed for the Humboldt County that can be used for comparison. The results show that the proposed approach is applicable for small communities with limited resources.  相似文献   

3.

The Dutch National Institute of Public Health and Environmental Protection publishes Environmental Outlooks in which 25‐year projections are made. These Outlooks quantifying the environmental problems, form the scientific basis for Dutch environmental policy. Traffic and transport is one of the main sectors causing environmental problems. The emissions and energy use of all relevant categories (road traffic, non‐road traffic) are based on model simulations with models. This paper describes the main models used.

If present policy is implemented only a minority of the environmental targets will be met.

If a sustainable transport system for the Netherlands means a large reducton in CO2 emissions and energy use after 2010 a stronger emphasis on both technical and non‐technical measures (such as land‐use planning combined with public transport improvements) for the period until 2010 is needed than proposed in the Second Transport Structure Plan, unless a sustainable energy source becomes available.  相似文献   

4.
Current air traffic control systems are mainly conceived to ensure the safety of flights by means of tactical interventions, because of the difficulty of accurately foreseeing the traffic evolution. In fact, in real traffic conditions, planes are often penalized since sometimes safety standards are redundant. Today, this management philosophy is no longer valid because of congestion phenomena which often occur in the most important terminal areas. Therefore, as to future control systems it is necessary to introduce not only more automated procedures to keep adequate safety levels, but also planning functions in order to increase the system capacity and to improve system efficiency. In recent years several studies have been carried out, new control concepts have been introduced and some optimization models and algorithms developed to improve air traffic management. In this paper a survey of our early works in this field is reported and a multilevel model of air traffic management is proposed and discussed. The functions corresponding to the on-line control, that is flow control, strategic control of flights and aircraft sequencing in a terminal area, are examined and the optimization models and solution algorithms are illustrated. Finally, relevant problems coped by recent research are mentioned and new trends are indicated.  相似文献   

5.

Since the first pilot scheme for area‐traffic control was introduced in the city of Montreal (1959–60), computer control of traffic in urban areas through the adaptation of existing traffic‐signal systems has been provided to an increasing extent. This area of work may pose problems for the professional traffic engineer whose background in computer technology and general digital electronics may be limited.

In considering the engineering implications of such schemes a systems approach is important and is adopted here. Three existing and representative schemes are briefly mentioned in order to outline basic features. A more detailed examination of the various system elements follows with mention of data collection and transmission, and the role of the control computer.

The paper continues with a reconsideration of the three representative schemes in the light of the detailed treatment of system components. It concludes with a tentative assessment of the present position of area traffic control schemes and some suggestions as to the future development.  相似文献   

6.
Abstract

Under Intelligent Transportation Systems (ITS), real-time operations of traffic management measures depend on long-term planning results, such as the origin–destination (OD) trip distribution; however, results from current planning procedures are unable to provide fundamental data for dynamic analysis. In order to capture dynamic traffic characteristics, transportation planning models should play an important role to integrate basic data with real-time traffic management and control. In this paper, a heuristic algorithm is proposed to establish the linkage between daily OD trips and dynamic traffic assignment (DTA) procedures; thus results from transportation planning projects, in terms of daily OD trips, can be extended to estimate time-dependent OD trips. Field data from Taiwan are collected and applied in the calibration and validation processes. Dynamic Network Assignment-Simulation Model for Advanced Road Telematics (DYNASMART-P), a simulation-based DTA model, is applied to generate time-dependent flows. The results from the validation process show high agreement between actual flows from vehicle detectors (VDs) and simulated flows from DYNAMSART-P.  相似文献   

7.
This paper presents an integrated framework for effective coupling of a signal timing estimation model and dynamic traffic assignment (DTA) in feedback loops. There are many challenges in effectively integrating signal timing tools with DTA software systems, such as data availability, exchange format, and system coupling. In this research, a tight coupling between a DTA model with various queue‐based simulation models and a quick estimation method Excel‐based signal control tool is achieved and tested. The presented framework design offers an automated solution for providing realistic signal timing parameters and intersection movement capacity allocation, especially for future year scenarios. The framework was used to design an open‐source data hub for multi‐resolution modeling in analysis, modeling and simulation applications, in which a typical regional planning model can be quickly converted to microscopic traffic simulation and signal optimization models. The coupling design and feedback loops are first demonstrated on a simple network, and we examine the theoretically important questions on the number of iterations required for reaching stable solutions in feedback loops. As shown in our experiment, the current coupled application becomes stable after about 30 iterations, when the capacity and signal timing parameters can quickly converge, while DTA's route switching model predominately determines and typically requires more iterations to reach a stable condition. A real‐world work zone case study illustrates how this application can be used to assess impacts of road construction or traffic incident events that disrupt normal traffic operations and cause route switching on multiple analysis levels. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
ABSTRACT

This paper presents an overview of the recent developments in traffic flow modelling and analysis using macroscopic fundamental diagram (MFD) as well as their applications. In recent literature, various aggregated traffic models have been proposed and studied to analyse traffic flow while enhancing network efficiency. Many of these studies have focused on models based on MFD that describes the relationship between aggregated flow and aggregated density of transport networks. The analysis of MFD has been carried out based on experimental data collected from sensors and GPS, as well as simulation models. Several factors are found to influence the existence and shape of MFD, including traffic demand, network and signal settings, and route choices. As MFD can well express the traffic dynamics of large urban transport networks, it has been extensively applied to traffic studies, including the development of network-wide control strategies, network partitioning, performance evaluation, and road pricing. This work also presents future extensions and research directions for MFD-based traffic modelling and applications.  相似文献   

9.
In traffic flow with naturalistic driving only, stimulus information pre-dominantly comes from the preceding vehicles with drivers occasionally responding to the following vehicles through the inspection of rear-view mirrors. Such one-sided information propagation may potentially be altered in future connected vehicle environment. This brings new motivations of modeling vehicle dynamics under bi-directional information propagation. In this study, stemming from microscopic bi-directional car-following models, a continuum traffic flow model is put forward that incorporates the bi-directional information impact macroscopically but can still preserve the anisotropic characteristics of traffic flow and avoid non-physical phenomenon such as wrong-way travels. We then analyze the properties of the continuum model and respectively illustrate the condition that guarantees the anisotropy, eradicates the negative travel speed, preserves the traveling waves and keeps the linear stability. Through a series of numerical experiments, it is concluded that (1) under the bi-directional looking context only when the backward weight ratio belongs to an appropriate range then the anisotropic property can be maintained; (2) forward-propagating traffic density waves and standing waves emerge with the increasing consideration ratio for backward information; (3) the more aggressive driving behaviors for the forward direction can delay the backward-propagating and speed up the forward-propagating of traffic density waves; (4) positive holding effect and negative pushing effect of backward looking can also be observed under different backward weight ratios; and (5) traffic flow stability varies with different proportion of backward traffic information contribution and such stability impact is sensitive to the initial traffic density condition. This proposed continuum model may contribute to future development of traffic control and coordination in future connected vehicle environment.  相似文献   

10.

Sea space planning and congestion management is receiving more attention. However, little work on sea space capacity and strategy analyses can be found in the literature. Compared to other transportation systems, a sea space system has some special features that require consideration. The system capacity also depends on the pattern of traffic using the system. In this paper, we model a sea space as a directional network and capacity models for berthing areas, anchorage areas, fairways and their intersections, as well as the entire sea space system are developed. These models can be used to compute capacity for any given traffic pattern which can be extracted from vessel trip records or from traffic forecasts. To implement these models, a software system called Sea Space Capacity and Strategy Analysis System (SCSAS) has been developed in Visual C + + and is now being used in Singapore.  相似文献   

11.
Projecting future traffic is an important stage in any traffic and transportation planning study. Accurate traffic forecasting is vital for transportation planning, highway safety evaluation, traffic operations analysis, and geometric and pavement design among others. In view of its importance, this paper introduces a regression-based traffic forecasting methodology for a one dimensional capacity-constrained highway. Five different prediction functions are tested; the best was selected according to the accuracy of projections against historical traffic data. The three-parameter logistic function produced more accurate projections compared to other functions tested when highway capacity constraints were taken into consideration. The R 2 values at various test locations ranged from 88% to 98%, indicating good prediction capability. Using the Fisher's information matrix approach, the t-statistic test showed all parameters in the logistic function were highly statistically significant. To evaluate reliability of projections, predictive intervals were calculated at a 95% level of confidence. Predictions using the logistic function were also compared to those predicted using the compound growth rate and linear regression methods. The results show that the proposed methodology generates much more reasonable projections than current practices.  相似文献   

12.
In the absence of system control strategies, it is common to observe bus bunching in transit operations. A transit operator would benefit from an accurate forecast of bus operations in order to control the system before it becomes too disrupted to be restored to a stable condition. To accomplish this, we present a general bus prediction framework. This framework relies on a stochastic and event-based bus operation model that provides sets of possible bus trajectories based on the observation of current bus positions, available via global positioning system (GPS) data. The median of the set of possible trajectories, called a particle, is used as the prediction. In particular, this enables the anticipation of irregularities between buses. Several bus models are proposed depending on the dwell and inter-stop running time representations. These models are calibrated and applied to a real case study thanks to the high quality data provided by TriMet (the Portland, Oregon, USA transit district). Predictions are finally evaluated by an a posteriori comparison with the real trajectories. The results highlight that only bus models accounting for the bus load can provide valid forecasts of a bus route over a large prediction horizon, especially for headway variations. Accounting for traffic signal timings and actual traffic flows does not significantly improves the prediction. Such a framework paves the way for further development of refined dynamic control strategies for bus operations.  相似文献   

13.
This study estimates a random parameter (mixed) logit model for active transportation (walk and bicycle) choices for work trips in the New York City (using 2010–2011 Regional Household Travel Survey Data). We explored the effects of traffic safety, walk–bike network facilities, and land use attributes on walk and bicycle mode choice decision in the New York City for home-to-work commute. Applying the flexible econometric structure of random parameter models, we capture the heterogeneity in the decision making process and simulate scenarios considering improvement in walk–bike infrastructure such as sidewalk width and length of bike lane. Our results indicate that increasing sidewalk width, total length of bike lane, and proportion of protected bike lane will increase the likelihood of more people taking active transportation mode This suggests that the local authorities and planning agencies to invest more on building and maintaining the infrastructure for pedestrians. Further, improvement in traffic safety by reducing traffic crashes involving pedestrians and bicyclists, will increase the likelihood of taking active transportation modes. Our results also show positive correlation between number of non-motorized trips by the other family members and the likelihood to choose active transportation mode. The model would be an essential tool to estimate the impact of improving traffic safety and walk–bike infrastructure which will assist in investment decision making.  相似文献   

14.
Vehicle routing problems (VRPs) whose typical objective is to minimise total travel costs over a tour have evolved over the years with objectives ranging from minimising travel times and distances to minimising pollution and fuel consumption. However, driver behaviour continues to be neglected while planning for vehicle routes. Factors such as traffic congestion levels, monotonous drives and fatigue have an impact on the behaviour of drivers, which in turn might affect their speed-choice and route-choice behaviours. The behaviour of drivers and their subsequent decision-making owing to these factors impact the revenue of transport companies and could lead to huge losses in extreme cases. There have been studies on the behaviour of drivers in isolation, without inclusion of the objectives and constraints of the traditional routing problem. This paper presents a review of existing models of VRP, planner behaviour models in the VRP context and driver behaviour models and provides a motivation to integrate these models in a stochastic traffic environment to produce practical, economic and driver-friendly logistics solutions. The paper provides valuable insights on the relevance of behavioural issues in logistics and highlights the modelling implications of incorporating planner and driver behaviour in the framework of routing problems.  相似文献   

15.
Many problems in transport planning and management tasks require an origindestination (O-D) matrix to represent the travel pattern. However, O-D matrices obtained through a large scale survey such as home or roadside interviews, tend to be costly, labour intensive and time disruptive to trip makers. Therefore, the use of low cost and easily available data is particularly attractive.The need of low-cost methods to estimate current and future O-D matrices is even more valuable in developing countries because of the rapid changes in population, economic activity and land use. Models of transport demand have been used for many years to synthesize O-D matrices in study areas. A typical example of this is the gravity model; its functional form, plus the appropriate values for the parameters involved, is employed to produce acceptable matrices representing trip making behaviour for many trip purposes and time periods.The work reported in this paper has combined the advantages of acceptable travel demand models with the low cost and availability of traffic counts. Three types of demand models have been used: gravity (GR), opportunity (OP) and gravity-opportunity (GO) models. Three estimation methods have been developed to calibrate these models from traffic counts, namely: non-linear-least-squares (NLLS), weighted-non-linear-least-squares (WNLLS) and maximumlikelihood (ML).The 1978 Ripon (urban vehicle movement) survey was used to test these methods. They were found to perform satisfactorily since each calibrated model reproduced the observed O-D matrix fairly closely. The tests were carried out using two assignment techniques, all-or-nothing and the stochastic method due to Burrell, in determining the routes taken through the network.requests for offprints  相似文献   

16.
Traffic flow prediction is an essential part of intelligent transportation systems (ITS). Most of the previous traffic flow prediction work treated traffic flow as a time series process only, ignoring the spatial relationship from the upstream flows or the correlation with other traffic attributes like speed and density. In this paper, we utilize a linear conditional Gaussian (LCG) Bayesian network (BN) model to consider both spatial and temporal dimensions of traffic as well as speed information for short‐term traffic flow prediction. The LCG BN allows both continuous and discrete variables, which enables the consideration of categorical variables in traffic flow prediction. A microscopic traffic simulation dataset is used to test the performance of the proposed model compared to other popular approaches under different predicting time intervals. In addition, the authors investigate the importance of spatial data and speed data in flow prediction by comparing models with different levels of information. The results indicate that the prediction accuracy will increase significantly when both spatial data and speed data are included. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Noise and vibration are two of the main problems associated with railways in residential areas. To ensure quality of life and well-being of inhabitants living in the vicinity of railway paths, it is important to evaluate, understand, control and regulate railway noise and vibration. Much attention has been focused on the impact of noise from railway traffic but the consideration of railway-induced vibration has often been neglected. This paper aims to provide policy guidance based on results obtained from the analyses of relationships estimated from ordinal logit models between human response, railway noise exposure and railway vibration exposure. This was achieved using data from case studies comprised of face-to-face interviews (N = 931), internal vibration measurements (N = 755), and noise calculations (N = 688) collected within the study “Human Response to Vibration in Residential Environments” by the University of Salford, UK. Firstly, the implications of neglecting vibration in railway noise policies are investigated. The findings suggest that it is important to account for railway induced vibrations in future noise and transport policies, as neglecting vibrations results in an underestimation of people highly annoyed by noise. Secondly, implications of neglecting different types of railway sources are presented. It was found that the impact of noise and vibration form maintenance operations should be better understood and should be taken into account when assessing the environmental impact of railways in residential environments. Finally, factors that were found to influence railway vibration annoyance are presented and expressed as weightings. The data shows that factors specific to a particular residential area should also be taken into account in future vibration policies as the literature shows that attitudinal, socio-demographic and situational factors have a large influence on vibration annoyance responses. This work will be of interest to researchers and environmental health practitioners involved in the assessment of vibration complaints, as well as to policy makers, planners and consultants involved in the design of buildings and railways.  相似文献   

18.
ABSTRACT

In current urban planning practice, macroscopic transport demand and assignment models are essential for the evaluation of mid- and long-term land use developments and infrastructure investments. The credibility of their projections strongly depends on their ability to reproduce present day traffic volumes. Obviously, a simplified model of reality will display some shortcomings, and the effect of these is asserted by quality measures that quantify the divergence from observed traffic volumes. There is, however, only rough guidance regarding acceptable ranges of these measures. Most of the literature on this subject approach these ranges from below, by discussing measures attained by operational models and using these as a benchmark, or by using the adverse effects of modelling errors to derive a minimum quality level. On the contrary, this study suggests upper limits for quality measures by analysing year-on-year variations in traffic volumes that result from changing land use and infrastructure.  相似文献   

19.
This paper aims to investigate the speed-flow relationship and drivers’ merging behavior in work zone merging areas. It first proposes lane-based speed-flow models, incorporating traffic conflicts among the lanes. It proceeds to develop a desired merging location model determining where drivers start to consider merging and a binary logit model that is applied to estimate the probabilities that drivers will merge into current adjacent gaps. A merging distance model is also proposed to find the 85th percentile of the merging distance. Finally, real work zone traffic data in Singapore are used to calibrate and evaluate the developed models. The findings show that the speed-flow relationship in the through lane is affected by the merge lane traffic under uncongested circumstances. Satisfactory results indicate that the merging behavioral models can competently predict drivers’ merging behavior and that the merging distance model could provide accurate information for traffic engineers to calculate the merge lane length.  相似文献   

20.
Roadside trees in Singapore are regularly trimmed for the purpose of traffic safety and roadside tree‐trimming project is one typical type of short‐term work zone projects. To implement such a short‐term work zone project, contractors usually divide an entire work zone into multiple subwork zones with the uniform length. This paper aims to determine an optimal subwork zone strategy for the short‐term work zone projects in four‐lane two‐way freeways with time window and uniform subwork zone length constraints. The deterministic queuing model is employed to estimate total user delay caused by the work zone project by taking into account variable traffic speeds. Based on the user delay estimations, this paper proceeds to build a minimization model subject to time window and uniform length constraints for the optimal subwork zone strategy problem. This paper also presents a variation of the minimization model to examine the impact of unequal subwork zone length constraint. Since these minimization models belong to the mixed‐integer non‐differentiable optimization problems, an iterative algorithm embedding with the genetic simulated annealing method is thus proposed to solve these models. Finally, a numerical example is carried out to investigate the effectiveness of the proposed models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号