首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
软土地区下穿运营高铁通道工程关键技术研究   总被引:4,自引:2,他引:2  
天津市武清区某城市干道下穿高速铁路及普速铁路立交工程是我国首例下穿运营高铁的通道工程,具有安全风险高、工程技术复杂、施工难度极大等特点。以高速铁路为研究对象,针对其软土地区及临近运营高铁等特点,分别对工程防护设计与安全评估技术、高压旋喷桩施工和开挖对桥台影响试验、全封闭止水、开挖、顶进施工技术以及监测技术进行了深入研究和测试,取得了大量宝贵的试验和实测数据,提出一整套软土地区临近高铁工程的安全评估和防护技术、监测技术和施工方法。研究结论:针对降水、开挖、打桩等关键工序进行安全评估计算分析是必要的;采取"分段开挖、边挖边压、上下分层、同层分片、逐片推进"施工措施,及"及时封底、分段浇筑"施工模式,可有效降低施工对高铁工程沉降变形的影响;旋喷桩施工对高铁影响较大,施工时需要注意控制压力,尽量在15 m以外。  相似文献   

2.
高速铁路运营速度快、轨道平顺性要求高;对于临近运营高铁路基的基坑开挖,尤其在软土地区,合理的基坑防护可以有效降低基坑开挖对高速铁路路基的影响,具有重要的现实意义。结合某城市工程实际,研究某高速铁路附近锚桩防护方案基坑开挖对高速铁路路基的影响。分别采用ABAQUD软件进行数值模拟和对各施工阶段进行现场监测,对比分析锚桩防护方案基坑开挖引起的高速铁路的附加沉降量与横向水平位移。结果表明,高速铁路的附加沉降量与横向水平位移符合规范要求,锚桩防护方案切实可行,数值模拟结果与实测数据对应较好,可以较好的反映高速铁路的位移情况。  相似文献   

3.
软土地区基坑开挖对临近高铁影响数值仿真分析   总被引:4,自引:0,他引:4  
研究目的:随着临近高铁的上跨和下穿道路工程日益增多,大量新建道路等基坑工程位于高铁路基或桥梁保护范围以内,使得高铁结构不可避免地受到基坑施工的影响,在软土地区更为严重。本文以天津地区临近某高铁的道路下穿高铁工程为背景,运用ABAQUS软件建立三维数值分析模型,对不同距离、不同挖深、不同封闭式路堑节段的基坑施工过程进行了数值仿真分析。研究结论:(1)基坑施工引起的高铁路基和框构桥梁的附加差异沉降量、轨道的平顺性均满足规范要求。基坑开挖会引起高铁路基和框构桥的隆起变形,封闭式路堑浇筑后隆起变形减小;(2)施工过程中,基坑开挖为关键风险阶段,当施工至远离高铁72 m以外的基坑时,剩余节段施工对高铁基本无影响;(3)施工过程中应尽量减小每次的开挖量,按照每节独立开挖浇筑的工序进行,尽可能地将施工影响控制在极小的范围内,以免影响铁路运营的安全性和舒适性;(4)本文研究成果可以为临近高铁工程建设提供一定的理论依据,对软土地区临近高铁的基坑开挖有一定的参考意义。  相似文献   

4.
研究目的:本文以某大面积深基坑为工程背景,该基坑邻近既有高速铁路桥梁及路基段,为确保施工期间铁路运营的安全性、降低施工风险,文中依据现行规范建立合理的高速铁路安全评估标准,经有限元模拟,分别对高速铁路路基及桥梁的沉降、相邻桥墩差异沉降、横向水平变形、纵向水平变形、轨道平顺性以及桥梁基础结构安全性等进行计算分析并给出合理的评价,从而确保基坑工程施工过程中高速铁路运营的安全性。研究结论:(1)高速铁路路基、桥梁叠加初始设计值后,各施工阶段的累积沉降值满足规范中15 mm、20 mm的限值要求;(2)高速铁路桥梁叠加初始设计值后的累积差异沉降满足规范中4 mm的限值要求;(3)叠加初始设计值后,各施工阶段横向水平变形均小于规范限值15.75 mm,纵向水平变形均小于规范限值28.06 mm;(4)在整个施工过程中,正线桥梁单桩承载力值均满足单桩容许承载力要求;(5)该研究成果可为邻近高速铁路的深基坑开挖等类似工程领域提供借鉴。  相似文献   

5.
新建车站零距离穿越既有地铁车站结构,势必会对其运营安全及结构变形产生不可忽视的影响。以南京某工程为实例,明挖基坑开挖通过与既有车站结构间增设一排隔离桩、对称开挖,暗挖施工采用上下台阶法进行开挖、左右导洞对称施工。根据有限元数值分析基坑开挖引起的临近地表沉降和既有车站结构的变形,沉降最大值为9.8 mm,既有结构新增最大沉降量2.9 mm,累计沉降量8.3 mm,可确保既有结构的安全。  相似文献   

6.
超深基坑支护开挖对土体变形影响数值模拟研究   总被引:4,自引:2,他引:2  
研究目的:为了掌握基坑开挖引起的围护结构变形和地层沉降的计算模拟方法,利用理论分析、数值模拟,以土与支护结构相互作用稳定性为研究核心,对深基坑开挖过程中引起的土层位移、地表沉降分布规律以及支护结构的位移、应力改变等相关内容进行研究,掌握基坑开挖引起的围护结构变形和地层沉降的计算模拟方法,从而指导设计工作.研究结果:基坑开挖至设计深度并完成底板施工时,模拟计算基坑外缘地表最大沉降为28.7 mm,施工过程中实测结果为28.46 mm,模拟分析计算结果与实际工程监测结果大致吻合,故研究结果可以指导设计工作.  相似文献   

7.
结合京杭大运河新开挖航道下穿高速铁路工程实例,采用有限元软件Plaxis 3D模拟分析航道围护结构施工、航道开挖、航道结构浇筑、航道通航等各阶段对高速铁路桥墩安全的影响,得出10种施工工况对桥墩的影响程度。研究结果表明:围护桩施工导致桥墩沉降,承台顶土体开挖导致桥墩上浮,但均在容许范围内;基坑开挖对桥墩顺桥向位移影响大,应采取措施增大其顺桥向刚度;应减少河床铺砌混凝土用量,河道通航后应保持水位稳定。  相似文献   

8.
杭州地铁2号线旁边某深基坑开挖工程,采用"坑中坑"和"地下连续墙外再增设一排同深度的隔离桩并用连梁连接"的特殊加固控制措施。对基坑开挖引起临近隧道的水平位移、竖向位移和水平收敛进行监测,分析大型深基坑开挖对旁边地铁隧道的影响规律以及支护加固措施的效果,并提出隧道水平位移的预测经验公式。研究结果表明:基坑开挖导致隧道产生明显的正态分布水平向变形,隧道横向直径增大,呈现"横椭圆"形状,但变形符合规范要求;隧道沉降未超过工程报警值。本工程采用的加固控制措施适用于大型深基坑工程,建议土体必须采取"分块开挖、随挖随撑、分层浇筑"的方式,减小靠近隧道侧的基坑开挖暴露宽度。  相似文献   

9.
某铁路枢纽内新建铁路工程,由于平面条件受限,以路堤形式并行既有高速铁路桥梁通过。为减小新建路基工程建设引起既有客运专线桥梁沉降变形,保证运营安全,经技术比较,采用桩筏U形结构。运用Plaxis软件建立数值分析模型,对基坑开挖、桩筏U形结构的施工过程进行数值模拟分析:基坑开挖及桩筏U形结构施工引起桥梁的隆起和下沉变形分别为1 mm、3 mm,两项变形叠加累计沉降2 mm,满足规范要求。  相似文献   

10.
针对临近高铁基坑开挖施工对高铁车站承台桩的变形影响,以珠海某临近既有运营城际铁路的基坑工程为背景,采用弹塑性有限元法,建立数值模型,模拟基坑开挖过程中对临近车站承台桩的影响。分析了基坑开挖过程中基坑边超载、土层弹模等因素对车站桥承台桩的变形影响。研究结果表明:基坑边地表超载的施加有利于约束车站承台桩的侧向位移、土体弹模对车站桥承台桩的水平位移影响较大。  相似文献   

11.
敏感环境下深基坑的设计与三维数值分析   总被引:4,自引:0,他引:4  
研究目的:基坑工程开挖深度和规模越来越大,以及周边越来越复杂敏感的环境条件,给基坑工程的设计施工提出了更严格的变形控制要求,因此对基坑及周边环境变形的预测非常重要。研究结论:详细阐述了上海软土地区一邻近多幢6层砖混结构住宅的深基坑工程支护设计方案及周边环境保护的技术措施。通过PLAXIS 3D Foundation软件建立三维有限元模型模拟了基坑开挖对邻近住宅的影响,与实测数据的对比表明,围护体变形和邻近住宅的沉降计算值与实测值较吻合,建立的模型和采用的分析方法可以较有效地预测基坑开挖对周边环境的影响,为设计和施工提供了重要依据。  相似文献   

12.
研究目的:对某大型地铁车站深基坑开挖过程中的软弱场地变形监测结果进行了统计分析,对基坑开挖引起的地面沉降、墙体水平位移和立柱桩体沉降的时空变化规律进行了整体分析,尤其是对不同基坑开挖深度对基坑变形速度的影响规律进行了总结。相关的结论和建议对城市软弱地基内地铁车站深基坑的变形监测方案设计、施工组织设计和施工安全控制等都具有一定的参考价值和指导意义。研究结论:(1)在深软场地深基坑开挖完成后地铁车站主体结构施工过程中拆撑可能造成地面的沉降比基坑开挖过程中产生的累积沉降还要大,应加强地铁主体结构施工过程中地面的沉降观测;(2)基坑侧壁水平累积位移与每次开挖土层厚度及其土层性质关系密切,随着开挖土层埋深的增大,基坑侧壁水平累积位移累积速度明显加快;(3)当基坑开挖深度有较大差异和基坑底部土层厚度分布极不均匀时,应考虑验算立柱桩的差异沉降;(4)软弱场地深基坑工程开挖引起的场地变形时空效应非常明显,随着开挖的进行,应沿纵向按限定长度逐段开挖,在每个开挖段分层、分小段开挖。  相似文献   

13.
为了研究基坑开挖过程对邻近高铁桥墩竖向变形的影响,对2个邻近高铁桥墩的基坑工程实例进行实时自动化监测,在对施工内容与监测结果对应分析的基础上,采用基于叠加原理的薄层分层总和法编制高铁桥墩临近荷载竖向变形影响计算软件PIAS,对计算结果与监测数据进行对比验证。监测结果显示,由于基坑开挖的卸载效应,实例一基坑开挖引起既有高铁桥墩隆起变形1.12 mm,实例二基坑开挖引起既有高铁桥墩隆起变形3.10 mm;计算结果显示,实例一基坑开挖引起既有高铁桥墩隆起变形0.93 mm,实例二基坑开挖引起既有高铁桥墩隆起变形2.79 mm;计算值与监测值基本一致,表明高铁桥墩临近荷载竖向变形影响计算软件PIAS适用于基坑开挖过程对临近高铁桥墩隆起变形的影响计算。  相似文献   

14.
研究目的:基于杭州滨江区感知谷基坑工程,结合现场施工实测数据及有限元模拟结果,对典型软土地区临近河道基坑施工对周边环境影响以及河道对基坑支护影响进行深入分析。通过对现场实测数据、有限元分析数据、基于半无限空间理论计算数据进行对比、分析,验证周边存在河道等构筑物情况下采用半无限土理论基坑计算的可行性,研究基坑受力及变形规律;确定合理基底加固措施,研究不同因素对基坑周边河堤等建(构)筑物变形的影响。研究结论:(1)本基坑位于软土地区,基坑开挖时围护结构深层水平位移曲线呈“鼓肚”状抛物线,围护桩最大水平位移发生在基坑底部4~5 m处;(2)通过数据对比可知,河道侧支护桩深层水平位移、土体沉降明显小于远离河道侧;(3)通过多软件计算结果分析可知,临近河道侧土体坡度较小且河道距离基坑大于1倍基坑深度时,采用半无限土理论计算得到的支撑轴力、基坑变形等结果依然可应用于工程设计;(4)通过总结分析,提出了增大河堤刚度可有效减小临近河道侧地表沉降、河堤变形;(5)通过对本项目设计与分析研究,可为类似软土地区临河复杂基坑工程设计及施工提供参考。  相似文献   

15.
以兰州市某地铁车站深基坑为例,研究第三系富水半成岩砂岩地层条件下桩撑支护结构深基坑的变形规律。通过对围护桩体水平位移、钢支撑轴力、地表沉降等实测结果进行分析,对基坑开挖过程进行数值模拟,将数值计算结果与实测结果进行对比研究基坑的变形规律。监测结果与数值分析表明:桩体变形呈现出两头小中间大的"弓型"变形特征,围护桩水平位移最大值发生在开挖面附近;正常施工下地表沉降形态为凹槽形,若围护桩间出现明显漏水、漏砂现象时为三角形;钢支撑轴力跳跃上升并在其下一道支撑架设后受力达到最大;深大基坑工程采用钻孔咬合灌注桩作为围护及止水结构时,必须确保桩体垂直度,保证桩体施工质量达到设计要求;数值计算结果与实测结果基本一致,数值模拟可为基坑的设计和施工提供依据。  相似文献   

16.
以成都某临近既有建筑物的地铁工程为背景,采用有限元方法分析研究地铁深基坑开挖全过程对临近建筑物的影响,重点研究基坑围护结构对基坑自身及临近建筑物变形的影响,并对基坑开挖全过程进行监测。研究结果表明,基坑开挖卸载使周边土层应力场发生变化,临近建筑物向基坑一侧发生变形;围护桩桩间采用袖阀管注浆形成止水帷幕及内支撑采用钢筋混凝土支撑,能有效控制基坑自身变形和临近建筑物变形。  相似文献   

17.
通过数值程序模拟郑州城郊铁路工程郑港六路站主体基坑施工对管线的影响,根据既有管线的材质、埋深、与主体结构间不同位置关系,考虑施工中可能出现的风险,并结合管线安全性的评价标准对地下管线的安全性进行分析和预测。结果表明,基坑开挖阶段周边土体卸载效应明显,为既有管线产生沉降变形主要阶段;拆除第三道支撑后出现基坑开挖过程中管线变形最不利工况。采用数值计算、理论分析与现场实测相结合的方法,研究施工发展形势及管线的变形规律,为类似长大深基坑邻近管线工程的设计及施工提供有益参考。  相似文献   

18.
软土城市地区,轨道交通明挖深基坑开挖引起的变形效应是工程建设过程中的一项重要控制内容。本文依托温州市域铁路某标段明挖深基坑工程,基于现场实测,分析了深基坑施工影响效应的地表沉降、立柱轴力、土体和墙体水平位移等因素。分析结果表明:地表沉降变形在深基坑开挖后开始加速,至底板混凝土浇筑完成后,地表沉降速率开始减缓,但累计沉降依然在增大。在深基坑开始开挖的一个月之内,土体深层水平位移变化非常明显,随开挖深度逐渐增大,在深度为13 m附近达到最大值,随后土体深层水平位移随深度的增加而减小;连续墙墙体的水平位移变化趋势基本上与土体深层水平位移一致;深基坑周边建筑物在基坑施工初期沉降较小,后期距离深基坑位置越近,建筑物累计沉降越大。  相似文献   

19.
以徐州轨道交通1号线工程车辆段基坑开挖施工为工程背景,在基坑开挖过程中对下卧地铁隧道的卸荷回弹变形进行动态再评估;对实测数据进行分析,提出了基坑施工对下卧地铁隧道的工程风险控制措施;有效控制了地铁隧道的上浮变形,确保了基坑及下卧地铁隧道结构安全.  相似文献   

20.
文章基于苏州地铁某车站,采用现场实测与数值模拟相结合的方法,研究深基坑开挖对周围土体影响规律,分析新建车站施工对临近既有车站受力变形影响。经研究,基坑开挖前2/3深度时,对周围土体扰动主要表现为沉降范围扩大,继续开挖及随后的回筑阶段对周围土体的扰动以沉降量增加为主;新建车站施工,既有车站地下一层侧墙受压,最大压应力出现在顶板高度处,地下二层侧墙以受拉为主,且拉应力处于较高水平,最大拉应力出现在该层中部;新建车站施工时,既有车站靠向基坑方向倾斜;既有车站顶板靠近基坑一端出现沉降,随开挖深度增加顶板逐渐抬升,开挖过程中沉降值减小45.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号