首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为探讨桥塔上风传感器安装位置对测量结果的影响,以计算流体力学大型商用软件Fluent为平台,采用有限体积法对计算域进行离散,基于k-湍流模型研究了桥塔附近的风场特性.分析了不同来流风速、不同来流风向下桥塔附近风观测点的风速、风向变化规律,给出了相应的风速修正系数和风向角修正值.研究结果表明:桥塔对测量结果的影响较大,桥塔上风传感器的安装位置应经过优化确定.风传感器位于迎风侧时,风速比值在0.45~1.30之间波动;位于背风侧时,风速比值在0.05~1.25之间波动.风传感器较优的安装位置为离塔1.0倍特征尺寸以上,且与来流方向的夹角在(45.0~56.5)范围内.   相似文献   

2.
侧风下高速列车车体与轮对的运行姿态   总被引:3,自引:0,他引:3  
应用流体动力学理论,建立了高速列车空气动力学模型,计算了作用于高速列车车体上的气动力和气动力矩;应用多体动力学理论,建立了车辆系统动力学模型,分析了在不同风向角、侧偏角与合成风速下高速列车头车车体和轮对的运行姿态。计算结果表明:在不同侧风环境下,头车车体始终向背风侧横摆和侧滚;当风向角为90°时,车体的横向位移和侧滚角最大;当列车车速为350 km.h-1,侧风风速分别为13.8、32.6 m.s-1时,列车头车车体最大横向位移分别为74.2、171.7 mm,最大侧滚角分别为3.1°和8.4°;当列车车速为200 km.h-1,风速不小于32.6 m.s-1,且风向角为90°时,列车头车一、二位轮对均向背风侧横移,背风侧车轮易发生爬轨现象,三、四位轮对均向迎风侧横移,三位轮对迎风侧车轮易发生爬轨现象;四位轮对的横移量和摇头角均小于前三位轮对,相对安全。  相似文献   

3.
城市街道峡谷机动车排放氮氧化物扩散模拟   总被引:1,自引:0,他引:1  
为了研究风速、风向、环境温度、污染源以及建筑物距离等因素对街道峡谷中汽车排放污染物扩散影响特性,本文采用RNG k-ε湍流模型方程及污染物对流扩散方程对其进行了二维数值模拟,得到了街道峡谷中机动车排放氮氧化物的流场和浓度场,从而证明了风速、风向、环境温度、污染源与建筑物距离等因素对街道峡谷中汽车排放污染物扩散确有明显影响作用。  相似文献   

4.
基于三维数值模拟软件STAR-CCM+,针对兰新二线防风明洞的风环境,考虑无车情况下防风明洞毗邻建筑、地貌等的影响前提下,研究了不同位置、不同风速、上下行线路、不同风向角,对防风明洞的来流风速遮蔽效果的影响进行了分析.结果表明:防风明洞中段遮蔽效果最强,乌鲁木齐端最弱.来流风速增大时,明洞遮蔽效果会减弱,且对乌鲁木齐一端的影响较大.随着风向角的增大,防风明洞的遮蔽效果成非线性增强趋势.  相似文献   

5.
为研究山区水电大坝蓄水后对库区桥位风场特性的影响,以某复杂深切峡谷大跨度悬索桥为工程背景,通过Gambit和ICEM分别构建了原始地形以及大坝蓄水后的地形数值模型,并应用软件FLUENT对两个模型进行了数值模拟,多工况对比分析了大坝蓄水对桥址区风速沿竖向和主梁跨向分布以及对主梁平均风速、风攻角和风向角的影响.研究结果表明:无蓄水时该桥址区风速有较明显的加速效应,风速放大系数高达1.14,但蓄水后明显降低;大坝蓄水后,大多数工况下主梁平均风速均有不同程度的降低,主梁的正攻角效应明显减弱,主梁平均风向角整体变化规律一致,风剖面形状在低海拔范围内有较大变化,而随着海拔增加二者逐渐趋于相同.   相似文献   

6.
刘多特  李永乐  汪斌 《西南交通大学学报》2016,29(6):1105-1112,1197
为考察偏斜风效应下地面结构周边地表积雪形态及形成机理,基于欧拉框架多相流理论,采用计算流体动力学(CFD)方法,模拟了不同来流风向下立方体建筑的特征绕流场,对比了地表侵蚀积雪预测指标的差异.研究结果表明:来流风向的改变影响模型周边近地流分离及附着的形成,决定了地表剪切状态,顺风体轴方向,风向角的增大(045)使侵蚀极值位置总体后移,模型背风侧极值位置随风向的改变较迎风侧敏感;空间吹雪浓度分布受模型特征扰流及风向重分配效应影响显著,决定了当地沉积强度,横风体轴方向,靠近来流侧近地吹雪浓度始终大于出流侧,两侧浓度差随风向角的增大(045)而增大.单位时间下地物水平正交方向的侵蚀沉积量随风向的改变呈现此消彼长的规律,风向对局部地表积雪形态的调整机制近似动态平衡.   相似文献   

7.
平地上高速列车的风致安全特性   总被引:6,自引:1,他引:5  
为研究高速列车在强侧风作用下安全行驶问题,基于空气动力学和多体系统动力学理论,建立了高速列车空气动力学模型和车辆系统动力学模型.应用该模型计算了不同风向角、不同风速和不同车速下作用于车体上的侧风气动载荷.根据高速列车整车试验规范,以脱轨系数、轮重减载率、轮轴横向力和轮轨垂向力为运行安全指标,分析了头车、中间车和尾车的运行安全性.研究表明:头车的安全性最差,且风向角为90°时,横风情况下最危险.随着车速的增大,最大安全风速急剧减小.当车速为200km/h时,最大安全风速为29.61 m/s;当车速为400 km/h时,最大安全风速为18.87m/s.  相似文献   

8.
顺向斜风对行车安全的影响不容忽略,为考查顺向斜风对运动车辆气动特性的影响,采用移动车辆模型风洞试验装置,针对缩尺比为1/20的车辆和桥梁模型,测试了顺向斜风作用下运动车辆的气动特性,讨论了风速、风向和风屏障等因素对移动车辆气动特性的影响. 结果表明:移动车辆的五分力系数在不同风速时吻合较好;侧向阻力系数、升力系数和点头力矩系数随着合成风偏角的增大而减小;风偏角较小时,风向角对车辆的升力系数有较明显的影响;风屏障使车辆的气动力系数接近0,且明显地改变了车辆气动力系数随风偏角的变化规律;设置风屏障后,车辆阻力系数的变化率受风偏角、车速和风速等条件的影响.   相似文献   

9.
为研究边界层风洞中下击暴流大缩尺比试验的可行性,基于冲击射流和壁面射流模型,采用大涡模拟方法,分析了静止和移动下击暴流的风场特性;通过与Wood模型、Oseguera模型、Victory模型以及经典壁面射流实验对比,验证了采用冲击射流和壁面射流模型在模拟稳态下击暴流出流段的一致性和有效性;在壁面射流模型入口处引入3种速度函数,模拟了下击暴流非稳态风速时程. 研究结果表明:与冲击射流一样,无协同流壁面射流能够有效地模拟静止下击暴流的稳态出流段;当冲击射流平移速度为出流速度的15%时,其最大水平风速较静止冲击射流增大了15.8%;协同流速度为射流速度的19.2%时,其最大风速较无协同流壁面射流增大了16.9%,带协同流壁面射流能够有效地模拟移动下击暴流;提出的速度入口函数模型作为壁面射流入流条件,能够较为真实地模拟出Andrews AFB下击暴流非稳态风场.   相似文献   

10.
为了考察三维绕流对斜拉索阻力系数的影响,设计了节段支撑模型和斜拉索阻力系数测试系统.对不同直径、不同姿态角的斜拉索,研究了表面形式、水平倾角、风向偏角、紊流度等因素对阻力系数的影响.结果表明:当风向角约为0°时,阻力系数随着水平倾角的增大而增大,当风向角为90°时,水平倾角的变化对阻力系数影响不大;在较高风速下,斜拉索表面压花或附着螺旋肋条使阻力系数增加了1~2倍,且肋条越高、压花表面覆盖率越大,阻力系数越大;紊流度对光面索阻力系数影响显著.  相似文献   

11.
为了研究公路收费站区域机动车排放污染物对空气污染的影响,提出了基于计算流体力学(CFD)的数值模拟方法.该方法根据收费站的实际规模,建立全尺寸CFD三维仿真模型.以Navicr-Stok~s方程为基础,采用标准k-ε占湍流模型,综合考虑风速、风向、气温、地形、交通量和收费模式等因素,对收费站区域内污染物扩散进行数值模拟.论文采用系统动力学方法建立交通仿真模型,模拟车辆到达、排队、缴费、离开等运行特征,可计算出不同交通量和收费模式下车辆经过收费站的平均停留时间,据此计算收费站污染物的排放源强.论文以渝黔高速公路某收费站为例,运用该数值模拟方法计算收费亭附近的CO浓度,并与实地监测数据相比较,二者吻合较好,表明该方法具有一定应用价值.  相似文献   

12.
格库铁路HDPE板栅栏有效防护距离   总被引:1,自引:0,他引:1       下载免费PDF全文
以格库铁路现场风沙试验段为研究对象, 运用数值模拟方法研究了HDPE板栅栏周围的风沙流场, 给出了不同初始风速下HDPE板栅栏有效防护距离与其孔隙率和高度的关系, 研究结果表明: 气流经过HDPE板栅栏时, 气流速度在栅栏前降低较快, 在栅栏后恢复较快, 经过一段距离后逐渐恢复到初始风速, 气流速度整体呈V形分布, 气流速度增减幅度随HDPE板栅栏孔隙率的增大逐渐减小; 在同一孔隙率下, 初始风速分别为6、24 m·s-1时, HDPE板栅栏背风侧回流区相差4.5倍HDPE板栅栏的高度; 孔隙率为60%时, 最小气流速度为8.9 m·s-1, HDPE板栅栏背风侧回流消失; 随着HDPE板孔隙率的增大, 最小气流速度逐渐增大; HDPE板栅栏的孔隙率存在不产生栅栏背风侧回流区的界限孔隙率, 为40%~60%;孔隙率小于50%时, 随着HDPE板孔隙率的增大, 有效防护距离逐渐增大, 孔隙率大于50%时, 随着HDPE板孔隙率的增大, 有效防护距离逐渐减小, 当孔隙率趋于100%时, 其有效防护距离趋于0, 因此, HDPE板栅栏的最优孔隙率为50%;随着高度的增加, HDPE板栅栏背风侧恢复到初始风速的距离增加, 同一风速下, 孔隙率为50%的HDPE板栅栏的有效防护距离是孔隙率为25%的HDPE板栅栏的1.35倍; 在现场布设HDPE板栅栏时建议使用40%~50%孔隙率的栅栏, 在经济条件允许的情况下可考虑适当增加栅栏高度, 以保证路基免受风沙侵蚀。   相似文献   

13.
大跨度刚构桥悬臂施工状态的抗风性能研究   总被引:8,自引:1,他引:7  
以主跨为190m的预应力混凝土三跨连续刚构桥作为研究对象,通过气弹模型风洞试验,讨论了平等两幅迎风侧梁与背风侧梁的6分力特性,不同风向偏角对刚构桥风致响应的影响,然后,结合试验结果和数值计算,比较分析了横向连系对平等两幅梁风致响应的抑振作用,分析表明,对于由平等两幅箱梁组成的大跨度刚构桥,其悬臂施工时将两梁横向相连对减少结构的风振横向响应是十分有效而便利的。  相似文献   

14.
结合某大跨悬索桥所在山区地形,研究了漏斗型峡谷这一特殊构造地形的桥址区平均风特性,为大跨度桥梁在漏斗型峡谷地区的抗风设计提供依据.首先,建立实际地形的数值模型,并利用Fluent软件对24个不同来流工况进行比较分析;然后,将整体模拟结果与实测结果进行对比,验证数值模拟的合理性;最后,通过模拟结果的对比分析,探讨漏斗型峡谷桥位对风速大小、风攻角、风向角在不同来流方向的影响规律,分析平均风速随攻角分布的特点以及不同位置处的竖向风剖面特性.研究结果表明:漏斗型峡谷桥址区存在明显峡谷风加速效应;漏斗型地形对桥址区来流的攻角和风向分别表现为弱扰乱性和高导向性,来流攻角和风向分别稳定集中在-5°~0°和25°~30°;峡谷中风速对攻角变化的敏感性更高.  相似文献   

15.
为了研究复杂山区地形桥址区风场空间特性变化规律,以位于我国西南山区的绿汁江大桥为工程背景,利用FLUENT对山区地形风场特性进行数值模拟,通过36个风向工况的计算分析,得到复杂山区地形桥址区风场的空间分布特性. 结果表明:受复杂地形影响,各桥位平均风速风剖面曲线和沿主梁横桥向风速曲线差异较大,桥址区附近地形最高点以上400 m风场仍明显受地形影响;受河道大角度弯曲影响,桥址区形成类似“单向开口槽”的地形,顺河流风向的来流风受山体阻挡,各桥位处的风速低于逆河流风向,两个风向的风速差值的平均值达13.6 m/s,且各桥位风攻角以负攻角为主;峡谷突宽使谷内风场出现一定的分流,突宽区风速稍有减弱,风场的分流量有限,使得在渡过突宽段后的峡谷缩窄区,风速依旧较大.   相似文献   

16.
对在火源附近有水喷淋与无水喷淋两种工况进行了小尺寸隧道模型试验,以研究边界条件对隧道火灾模型试验临界风速的影响.结果表明,与无喷淋相比,水喷淋增大了火源附近的对流及辐射热损失,使烟气温度降低,l临界风速明显减小.对于小尺寸模型隧道,在火源处采用水喷淋的边界条件比较符合火源附近的壁面换热边界条件,得到的临界风速更合理.  相似文献   

17.
采用大气底层边界速度型风场模拟自然风和Marshall-Palmer雨滴谱模型,应用离散相模型研究了风雨联合作用环境下列车运行时气动特性的变化情况.结果表明:雨滴颗粒的加入扰乱了列车周围气流的正常流动,减轻了列车背风侧气流漩涡的脱落,列车迎风侧和背风侧的压力差减小;降雨强度对列车气动特性影响不大,从20 mm/h增大到100 mm/h,受影响最大的横向力仅增大了9.11%;风雨耦合环境下列车的运行速度对气动阻力影响较明显,列车时速从200 km/h到400 km/h,阻力增大了102%;随着车速增大,车辆所受横向力与升力的变化规律与车辆在列车中的位置相关,头车所受到横向力明显增大,而尾车的横向力则呈减小趋势,而所受升力正好相反,头车呈减小趋势,尾车则明显升高.  相似文献   

18.
利用Creo软件建立了某型动车组头中尾3车编组和不同高度的路堤模型,通过Fluent软件模拟列车在车速分别为300和350 km·h-1,横风风速分别为17.10、20.70、24.40和28.40 m·s-1的环境下运行,将获取的高速列车气动力载荷施加到Simpack建立的动力学模型中,计算其动力学性能参数;深入分析了横风工况下高速列车在不同高度复线路堤背风侧运行时车体的压力分布、气流场结构、气动力与风致安全性,并重点探究了头车在不同运行速度和横风风速下的运行安全性。分析结果表明:在相同车速和横风环境下,随着路堤高度的增加,列车受到的侧向力整体呈增大趋势,尾车在横风作用下受到反向侧向力,头车所受侧向力最大,且升力持续增大,中间车所受升力相对较大,尾车所受阻力最大;横风环境下列车压力峰值点位于头车鼻尖处且向迎风侧偏移,各路堤高度工况下气流场结构基本相同,头车背风侧和底部转向架处有明显的涡流,但尾车处的涡流却在迎风侧,这可能是导致尾车反向侧向力的主因;脱轨系数、轮轴横向力、轮轨垂向力和轮重减载率均随路堤高度和横风风速的增大而增大,轮轨垂向力始终在安全限值内,当横风风速分别为24.40和28.40 m·s-1时,列车运行速度应分别低于350和300 km·h-1,以保证列车行车安全。   相似文献   

19.
采用联合仿真方法实现了飞机环境控制系统对座舱环境的调节, 建立了飞机环境控制系统到座舱环境闭环仿真模型, 研究了考虑再循环风时不同送风形式对引气污染物在座舱内乘客呼吸区域传播的影响; 以B737-200座舱模型为研究对象, 分析了引气污染发生时相同供气量与不同再循环风比例下, 天花板送风、侧壁送风、混合送风下污染物在呼吸区的分布情况。研究结果表明: 在污染物进入座舱阶段, 不同送风形式与再循环风比例下不同位置污染物浓度存在差异, 天花板送风形式下污染物浓度较大; 再循环风比例每增加20%, 混合送风、侧壁送风、天花板送风形式下污染物浓度分别降低约18.9%、20.6%、15.6%, 侧壁送风形式下污染物浓度降低最多; 在污染物排除阶段, 侧壁送风形式相较于混合送风和天花板送风形式下排污效率分别提升约42.6%和38.7%;采用混合送风或天花板送风形式时, 随着再循环风比例的增加, 排污效率显著提升, 再循环风比例每增加20%, 混合送风和天花板送风排污效率分别提高约10.7%和7.7%;侧壁送风形式下随着再循环风比例的增加, 排污效率无明显提升, 在较高再循环风比例仍可保持最好的排污效率, 能够实现污染物排除和节能的双重优化。可见, 飞机座舱引气污染事件发生时在不改变送风量情况下采用侧壁送风形式和高再循环风比例可以使污染物危害降到最低。   相似文献   

20.
特长隧道群洞口多位于峡谷中, 上游隧道污染物易扩散至下游隧道造成二次污染并大大增加了下游隧道的通风负荷。 为了掌握特长隧道群毗邻隧道的污染物窜流问题及影响, 以浙江省景文高速公路工程叶麻尖特长隧道群为依托, 建立了流体力学分析模型, 以 CO 为示踪污染物, 分析了隧道洞内外温差、 峡谷风速、 进出口风速比等因素对窜流比的影响。 分析表明: 隧道出口污染气流与环境温差越大, 或者峡谷风风速越大, 或者隧道进出口风速比越小, 则窜流比越低; 在不利工况下, 叶麻尖隧道左、 右线隧道的上下游窜流比分别约为 67%和 73%。 最后, 针对叶麻尖特长隧道群提出了竖井送排风+互补风道分流+射流风机通风方案的新型绿色节能通风方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号