首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
制动防抱死系统(ABS)是提高车辆制动性能和行车安全性的重要装置。文章通过对CJY6470E轻型客车ABS制动防抱死系统的试验,分析ABS的正常与非正常工作条件下车轮的线速度变化曲线,并判断ABS与车型的匹配状态。  相似文献   

2.
王晶 《汽车电器》2022,(10):32-34+38
提出一种适用于纯电动车辆的线控制动系统扭矩分配控制方法,首先根据制动踏板状态解析驾驶员的制动需求并获得需求制动扭矩,之后根据电池与电机状态计算电机最大制动功率,在此基础上分配电机系统与液压系统的制动扭矩。本文考虑到液压系统由于环境及自身非线性等因素影响其输出的稳定性与准确性,通过调节电机系统产生的制动扭矩对其进行补偿,保证最终作用在车辆中的制动扭矩与驾驶员需求保持一致。针对所提出的控制方法建立Matlab/Simulink模型,通过仿真验证对该方法的可行性及有效性进行了验证。  相似文献   

3.
ABS系统与车辆的匹配是一个亟待解决的课题。为了优化针对ABS系统性能的试验方法,通过一系列不同道路附着系数、不同车辆行驶速度及车辆负荷的工况下,做了相关道路试验,以验证ABS系统的性能,并根据对车辆制动减速度和车轮转速的监测结果,验证试验方法的规范性,提出了增加车辆横摆角度和横摆角速度以评价车辆制动性能的建议。  相似文献   

4.
文章从功能安全角度对电动汽车的制动能量回收系统设计了扭矩安全监控方案,并给出了制动扭矩安全监控的有效方法,确保车辆在制动系统失效或发生故障的情况下进入安全状态。  相似文献   

5.
提出一种分布式驱动电动车动力系统,该车前轴采用集中式驱动电机,后轮采用两个轮毂电机驱动,实现车辆的两驱和四驱行驶模式。为保证车辆在不同工况下平稳行驶,提出基于滑转率均衡控制的扭矩分配策略,来获得车辆转弯时的最佳驱动与制动能力,并对电池充放电功率进行合理限制来保证电池的使用寿命。根据样车的道路试验结果显示,电机扭矩能够根据方向盘转角实时地进行扭矩调整满足车轮差速控制,根据试验结果得知,车辆操纵稳定性的各项指标均能满足需求。  相似文献   

6.
制动系统相关故障和行车间距不足是导致载货汽车追尾和侧翻事故的主要原因,通过制动危险状态及其影响因素的分析,搭建车辆在途状态检测装置,获取载货汽车载荷、车速、制动系统状态数据;基于传感器数据进行了制动蹄片磨损程度异常、制动蹄片温度异常状态和制动灯故障等单参数制动危险状态辨识;通过对制动过程中车辆进行动力学分析,建立了多参数制动距离计算模型,为标定模型参数,设计并完成了车辆滑行试验;通过仿真及实车试验,对载货汽车制动距离模型的有效性进行了验证。基于多参数制动距离模型,提出了一种检测载货汽车制动过程中的危险状态的方法。  相似文献   

7.
ABS是英文ANTILOCK BRAKE SYSTEM的缩写,即防抱死制动系统。ABS系统能极大地改善和提高车辆的制动性能,它能够在制动过程中对被制动车轮的制动压力进行自适应调节,防止制动车轮发生抱死,是提高车辆主动安全性的重要装备。本文在介绍防抱死制动系统(ABS)的结构和工作原理的基础上,重点结合VBOX设备和MT500/e KFZ轮速传感器介绍某轻型客车的ABS试验流程,同时对试验结果进行比较和分析,得出该车辆的防抱死制动性能的综合评价。  相似文献   

8.
制动减速度和制动响应时间作为商用车制动系统两项重要技术指标,直接影响车辆行车安全.本文通过对某款8×8车型的制动减速度与制动响应时间进行匹配设计、测试分析及设计优化,最终使制动减速度达到理想状态,制动响应时间大幅缩短,制动性能得到了大幅提升,进一步提高了整车的安全性.  相似文献   

9.
装有ABS(防抱死制动系统)的车辆在制动时,车轮制动器中的压力由电脑根据车轮滑移率并通过液压控制系统实现自动控制.由于制动管路中的油压不断变化(变化频率高达10次/S),因而使车轮能一直保持滚动而不抱死,使车辆达到最佳制动效果,避免侧滑和方向失控.鉴于ABS结构的特点,在初驾ABS车辆时应注意以下五不要:  相似文献   

10.
文章提出了一种无人驾驶纯电动汽车制动扭矩分配控制方法。该方法首先根据动力电池、驱动电机状态以及整车状态计算驱动电机最大能量回收扭矩,并在此基础上进行需求制动扭矩分配;接下来创造性的将电机系统引入到制动控制系统中,充分考虑了液压制动系统由于温度(如热衰减)、部件机械特性以及环境等影响其输出制动力矩稳定性与准确性的因素,通过电机能量回收所产生的制动扭矩对此进行补偿,保证最终车辆制动过程中所产生的负向加速度与需求保持一致。最后通过实车实验,验证了该方法的可行性与可靠性。  相似文献   

11.
装有ABS(防抱死制动系统)的车辆在制动时,车辆制动器中的压力由电脑根据车轮滑移率并通过液压控制系统实现自动控制.由于制动管路中的油压不断变化(变化频率高达10次/秒),因而使车轮能一直保持滚动而不抱死,使车辆达到最佳制动效果,避免侧滑和方向失控,鉴于ABS结构的特点,在初驾ABS车辆时应注意以下五不要:  相似文献   

12.
ABS是一种具有防滑且防锁死等优点的汽车安全控制系统,既有普通制动系统的制动功能,又能防止车轮锁死,使汽车在制动状态下仍能转向,保证汽车的制动方向稳定性,防止产生侧滑和跑偏,是目前汽车领域最先进和制动效果最佳的制动装置.ABC防抱死制动系统,通过安装在车轮上的传感器发出车轮将被抱死的信号,控制器指令调节器降低该车轮制动缸的油压,减小制动力矩,文章对ABS防抱死制动系统的组成和原理进行分析,并对该系统的故障检测技术进行探讨.  相似文献   

13.
汽车ABS制动防抱死系统检验与测试方法研究   总被引:1,自引:0,他引:1  
ABS制动防抱死系统是提高车辆制动性能和行车安全性的重要装置,本文通过分析ABS制支国际市场抱死系统的正常与非正常工作条件下车轮的线速度变化曲线,设计出一种ABS制动防抱死系统检测试验台。  相似文献   

14.
面向智能车设计了一款并联式电子液压制动系统,并针对智能车在紧急制动时易失稳的问题,基于车辆制动时的载荷转移特性,提出一种制动力分配控制策略。根据车辆在制动时前、后轴载荷转移量调节前、后轴车轮制动力,并将此时前、后轴车轮制动力矩作为基准制动力矩,基于径向基神经网络和PID算法设计附加制动力矩控制器,以此调节各车轮的制动力。最后搭建模型并与PID控制进行了仿真对比,结果表明,在车辆紧急制动工况下,提出的附加制动力矩融合控制器可以有效缩短制动距离并显著提高车辆稳定性。  相似文献   

15.
正(接上期)5.减速滑行与再生制动图13为减速滑行工况数据流。松开加速踏板,车辆开始滑行,发动机逐渐断油熄火,并在MG1调速下转速降到零,减少滑行过程中的摩擦损失。此时MG2在车轮的反拖下,作为发电机进行能量回收。车辆滑行工况动力流分配如图14所示。车辆滑行中如果进行制动,HV ECU会根据制动扭矩需求进行液压制动和电机制动的扭矩分配,如图15所示的数据流中显示了再生制动扭矩。6.倒车倒车工况是由HV蓄电池供电给MG2反向旋转,驱动车辆倒  相似文献   

16.
赛车车轮是车辆承载的重要安全部件,行驶过程中,赛车车轮承受来自路面不同幅值、不同频率的激励除受垂直力外,还受因车辆起动、制动时扭矩的作用,转弯、冲击等来自多方向的不规则受力。高速旋转的车轮直接影响车辆的平稳性和操纵性。文章以Wonder7号铝合金车轮为研究对象,在CATIA中建立赛车车轮的三维模型,并导入到ANSYS Workbench软件中生成轮辋和轮辐的几何模型。根据计算极限工况下,对wonder7号车轮进行受力分析,并对车轮的受力载荷进行确定。建立车轮的有限元模型并进行有限元分析。为预测车轮的疲劳寿命,用Ansys中的Fatigue模块对车轮进行疲劳寿命分析,预测车轮疲劳破坏位置和使用寿命,对设计人员起了指导意义。  相似文献   

17.
随着运输行业的飞速发展,对运输车辆的运营效率的要求不断提高,导致匹配的发动机功率不断提高。由于传统制动系统受多重因素的限制,制动功效无法提高到同步水平,这对商用车自身的制动性能是非常大的考验。液力缓速器最高能吸收制动能量的90%,可以有效地辅助行车制动系统,故液力缓速器作为商用车制动辅助系统越来越受到人们关注和接受,已逐渐成为重型车辆主流配置。文章以某重卡车型匹配液力缓速器案例为背景,对缓速器布置形式、扭矩大小、冷却水路布置方式的选取进行了理论分析及计算。  相似文献   

18.
车辆上装用ABS后,力图通过控制调节车轮的运动状态,以获取最佳制动效果。制动器的热衰退性能是其制动效能恒定性的重要决定因素。为提高制动效能因素,鼓式制动器上都采用自动增力蹄,但其制动效能的热恒定性确大为下降。本文以鼓式制动器为例,介绍车辆上装用ABS后的制动器热力学计算方法,为车辆上装用ABS后制动器的设计提供基础,也可由此对制动器使用寿命的影响进行分析。  相似文献   

19.
电子稳定程序(ESP)用于在高速转弯或在湿滑路面上行驶时提供最佳的车辆稳定性和方向控制。电子控制单元(ECU)通过方向盘转角传感器确定驾驶员想要的行驶方向;通过车轮速度传感器和横向偏摆率传感器来计算车辆的实际行驶方向。当电子稳定程序检测到车辆行驶轨迹与驾驶员要求不符时,电子稳定程序将首先利用牵引力控制系统中的发动机扭矩减小功能并向发动机控制模块(ECM)发送一个串行数据通信信号.请求减小发动机扭矩。如果电子稳定程序仍然检测到车轮侧向滑移。则电子稳定程序将实行主动制动干预。  相似文献   

20.
基于现有并联液力缓速器,分别设计2.0、2.03、2.138三种不同齿轮增速比的缓速器驱动齿轮和被动齿轮,并装配样箱进行缓速器外特性实验,研究齿轮增速比对缓速器制动扭矩性能的影响。根据现有缓速器实验数据,通过理论计算,设计满足整车匹配缓速器所需的缓速器齿轮增速比及对应缓速器制动扭矩曲线。实验表明,可通过增大缓速器齿轮增速比来解决缓速器低转速区间段制动扭矩较小问题,进而满足市场上大马力小后桥车型匹配缓速器的需求,并可通过限制扭矩控制方法实现高转速区域缓速器制动扭矩的平稳输出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号