首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The effects of cupping on a 0.7 radius foil section with a maximum thickness ratio of 3.5% of the Gawn-Burrill propeller series were studied both numerically and experimentally. A cupped foil increases its lift as a result of the induced camber by the cup, as the numerical results demonstrate. Also, the minimum pressure location of cupped foil moves from midchord to the cupped position near the trailing edge when the foil is in shock-free entrance. The calculated results and the tests confirm that cupped foil increases lift and may improve the cavitation performance of an underpitched propeller.  相似文献   

2.
This study was concerned with the free-surface wave flow around a surface-piercing foil. The volume of fluid method implemented in a Navier–Stokes computational fluid dynamics code was employed. Three widely used discretization schemes for the volume of fluid method were assessed for a test case that involved general ship waves, spilling breaking waves in front of the leading edge, and bubbly free surfaces in separated regions. A single computational approach was selected for the comparison, and a grid-dependence study was carried out. The computational results were validated against existing experimental data, showing good agreement. The validation results suggest that all three discretization schemes perform well, but the best and most efficient results were obtained using the high-resolution interface capturing scheme.  相似文献   

3.
To examine the flow field of a viscous fluid around the trailing edge of a wing with respect to the Kutta condition or the Joukowski hypothesis, an experimental investigation into the velocity fields around two-dimensional (2D) wings NACA0012 and NACA4412 was carried out using an X-type hot-wire anemometer in a wind tunnel and the method of colored milk injection in a circulating water channel. The results of these investigations revealed that the flow of a viscous fluid at the trailing edge of a 2D wing is tangential to the face on the pressure side, and that the flow is very slow or reversed on the suction side due to separation when the angle of attack is greater than 7.5°. By flow visualization, a Kármán vortex street was found in the wake of both wings (NACA0012 and NACA4412) when the angle of attack was 5°. These results show that the ordinary Kutta condition with respect to the direction of outflow at the trailing edge is not necessarily satisfied in a viscous fluid, but the Kutta condition with respect to the pressure at the trailing edge is satisfied as usual. Numerical results, which have been obtained as the solution of Reynolds-averaged Navier-Stokes equations, show good agreement with above-mentioned experimental results. Therefore, CFD (Computational Fluid Dynamics) simulation has proved to be very effective for studying steady viscous flow around the trailing edge of a 2D wing.  相似文献   

4.
张曦  苏玉民  王兆立 《船舶力学》2012,16(4):333-341
文章研究了粘性流场中半圆柱振动产生的旋涡对二维摆动水翼推进性能的影响。利用数值方法计算了振动半圆柱尾流中二维摆动水翼的水动力性能。计算结果表明,半圆柱涡和水翼涡之间存在4种相互作用模式。相反旋向的半圆柱涡和水翼涡相互作用时,摆动水翼的平均推力系数最大。相同旋向的半圆柱涡和水翼首缘涡相互作用并且最终融入到水翼尾缘涡时,摆动水翼能够从半圆柱涡中吸收能量。  相似文献   

5.
切片理论应用于双体船运动计算时的伪共振问题   总被引:5,自引:0,他引:5  
用切片理论来计算双体船流体动力系数时,在一些离散的频率上出现了共振。本文采用在二维双体剖面之间的自由面条件中引进入工粘性的技术,既不违背双体之间存在自由面的物理事实,又能有效地克服上述伪共振现象。文中对双椭球体辐射问题的计算及其与三维源汇分布法结果的比较表明,改进后的切片法可有效地应用于双体船在波浪中的运动计算。  相似文献   

6.
船舶航行时水动力系数求解二维半理论的稳定算法   总被引:4,自引:2,他引:2  
段文洋  马山 《船舶力学》2004,8(4):27-34
给出一种基于高速细长体理论的预报排水型船在波浪上运动水动力求解的数值方法.在该理论的定解条件中,自由面条件是三维的,而控制方程和物面条件则是二维的,所以称为二维半理论.采用二维时域自由面Green函数将定解问题转化为船体切片上的积分方程,进而求解有航速下的船舶水动力问题.重点讨论了水动力计算的稳定算法.对ITTC建议的标准WIGLEY船型作了理论预报,并与DELFT大学的实验结果和用STF切片法的理论预报结果作了比较.比较结果表明,本文提出的二维半理论的预报结果与试验结果相当接近,而计算效率和切片法相当,且大大改善了理论预报的精度.  相似文献   

7.
A CIP-based method for numerical simulations of violent free-surface flows   总被引:3,自引:0,他引:3  
A CFD model is proposed for numerical simulations of extremely nonlinear free-surface flows such as wave impact phenomena and violent wave–body interactions. The constrained interpolation profile (CIP) method is adopted as the base scheme for the model. The wave–body interaction is treated as a multiphase problem, which has liquid (water), gas (air), and solid (wave-maker and floating body) phases. The flow is represented by one set of governing equations, which are solved numerically on a nonuniform, staggered Cartesian grid by a finite-difference method. The free surface as well as the body boundary are immersed in the computation domain and captured by different methods. In this article, the proposed numerical model is first described. Then to validate the accuracy and demonstrate the capability, several two-dimensional numerical simulations are presented, and compared with experiments and with computations by other numerical methods. The numerical results show that the present computation model is both robust and accurate for violent free-surface flows.  相似文献   

8.
Continuous vortieity panels were used to model general unsteady inviscid, incompressible, two-dimensional flows. The geometry of the airfoil was approximated by series of short straight segments having endpoints that lie on the actual surface. A piecewise linear, continuous distribution of vorticity over the airfoil surface was used to generate disturbance flow. The no-penetration condition was imposed at the midpoint of each segment and at discrete times. The wake was simulated by a system of point vortices, which moved at local fluid velocity. At each time step, a new wake panel with uniform vortieity distribution was attached to the trailing edge, and the condition of constant circulation around the airfoil and wake was imposed. A new expression for Kutta condition was developed to study the interference effect between two impulsively started NACA0012 airfoils. The tandem arrangement was found to he the most effective to enhance the lift of the rear airfoil. The interference effect between tidal turbine blades was shown clearly.  相似文献   

9.
面元法预报螺旋桨表面非定常压力分布   总被引:6,自引:0,他引:6  
本文建立了扰动速度势面元法预报螺旋桨表面非定常压力分布的理论和数值方法。该方法把桨叶和桨毂表面离散为若干四边形双曲面元,每个面元上布置等强度源汇和偶极子分布,螺旋桨尾涡面也离散为布置等强度偶极子的四边形双曲面元。所有的时域参数通过傅里叶级数展开转化为频域参数,使得在时间域内的求解转化为每一谐调阶上的求解。桨叶随边处通过迭代和采用广义逆矩阵方法在每一谐调阶上实现非线性等压库塔条件。桨叶表面非定常压力  相似文献   

10.
Continuous vorticity panels are used to model general unsteady inviscid, incompressible, and two-dimensional flows. The geometry of the airfoil is approximated by series of short straight segments having endpoints that lie on the actual surface. A piecewise linear, continuous distribution of vorticity over the airfoil surface is used to generate disturbance flow. The no-penetration condition is imposed at the midpoint of each segment and at discrete times. The wake is simulated by a system of point vortices, which move at local fluid velocity. At each time step, a new wake panel with uniform vorticity distribution is attached to the trailing edge, and the condition of constant circulation around the airfoil and wake is imposed. A new expression for Kutta condition is developed to study (i) the effect of thickness on the lift build-up of an impulsively started airfoil, (ii) the effects of reduced frequency and heave amplitude on the thrust production of flapping airfoils, and (iii) the vortex-airfoil interaction. This work presents some hydrodynamic results for tidalstream turbine.  相似文献   

11.
螺旋桨非定常性能的面元法预报   总被引:2,自引:1,他引:1  
谭廷寿 《船舶工程》2005,27(5):13-17
采用扰动速度势面元法预报螺旋桨非定常性能,桨叶、桨毂和尾涡面由双曲四边形面元进行离散,对时域内非定常问题的求解采用时间步进迭代方法,建立了桨叶随边非定常等压库塔条件的非线性迭代结构,使迭代求解更加有效、快速和稳定.预报结果与测试结果或其它数值结果比较是令人满意的.  相似文献   

12.
二维Oseen流中潜体产生的非定常表面波   总被引:1,自引:0,他引:1  
本文考虑无限深不可压粘性流体中潜体产生的非定常表面波.受扰流动由非定常Oseen方程控制,对自由面上的波动则采用线性化边界条件,物体用具有周期振荡强度的Oseen极子模拟.通过Fourier变换,自由表面波的精确解表示为带复变色散函数的积分式,波动力学性质由Reynolds数和Strouhal数刻画.运用Lighthill定理,导出了亚临界和超临界Strouhal数时表面波的远场解的渐近式.结果显示,振荡Oseen极子生成的波动包含稳态和瞬态响应.对于亚临界Strouhal数粘性流动,存在四列波,三列在下游区域传播,一列在上游区域;对于超临界Strouhal数粘性流动,仅有在下游区域传播的二列波.  相似文献   

13.
螺旋桨非定常轴承力计算   总被引:3,自引:0,他引:3  
谭廷寿  贺伟 《船海工程》2006,35(2):42-46
采用扰动速度势面元法计算螺旋桨非定常轴承力,桨叶、桨毂和尾涡面由双曲四边形面元进行离散,对时域内非定常问题的求解采用时间步进迭代方法,建立了满足桨叶随边非定常等压库塔条件的非线性迭代结构,使迭代求解更加有效、快速和稳定。  相似文献   

14.
In this article, a new computational fluid dynamics simulation approach based on the constraint interpolation profile (CIP) method is applied to tackle the violent sloshing problem. The present study considers two-dimensional sloshing phenomena in a rectangular tank. By the proposed method, the sloshing problem is viewed as a multiphase problem that includes water and air flows. A stationary Cartesian grid is used and the free surface is solved by an interface capturing method. The CIP combined unified procedure (CCUP) scheme was adopted for the flow solver, and both the CIP scheme and the CIP conservative semi-Lagrangian with cubic interpolation polynomial (CIP-CSL3) scheme were used for interface capturing. For validation of the numerical method, a physical experiment was conducted with a rectangular tank for several frequencies and filling heights. A convergence check was first performed for the method. The numerical simulation results on violent sloshing show that the use of the CIP-CSL3 scheme as an interface capturing procedure gives much better results for the pressures and free-surface profiles than the conventional CIP scheme.  相似文献   

15.
本文提出了一个预报船体在波浪中大幅运动时非线性水动压力场的二维时域理论。船体扰动势用时域自由面格林函数和在入射波下的瞬时湿表面上的分布源求解;与非线性水动压力场相匹配的船体运动用差分法求得。为提高计算效率和避免数值过程发散,采用了改进的数值模型和方案。通过线性理论计算与模型试验结果的比较,指出了线性切片理论在预报水动压力场时的不足,水动压力与波高的非线性关系及正负水动压力沿船体表面的分布在Wigley船的计算比较中得到了说明。初步计算表明,该理论的实用化发展前景是令有鼓舞的。相应的计算机程序可在PC机上运行。  相似文献   

16.
开发了对浮式平台系统进行耦合动态分析的全时域程序。采用二阶时域方法计算水动力荷载,在此方法中,对物面边界条件和自由水面边界条件进行泰勒级数展开,利用Stokes摄动展开分别建立相应的一阶、二阶边值问题,而且此边值问题的计算域不随时间变化。采用高阶边界元方法计算每一时刻流场中的速度势,利用四阶预报校正法对二阶自由水面边界条件进行数值积分。在自由表面加入一个人工阻尼层来避免波浪的反射。对于系泊缆索/立管/张力腿的动力分析,在一个总体坐标系中对控制方程进行描述,采用基于细长杆理论的有限元方法进行求解。在耦合动态分析中,采用Newmark方法对平台和系泊缆索/立管/张力腿的运动方程同时进行求解。利用开发的耦合分析程序对一个桁架式Spar平台的运动响应进行了数值模拟,给出了平台的位移和系泊缆索/立管上端点的张力,并得到了一些重要结论。  相似文献   

17.
潜射导弹尾空泡从生成到拉断过程的数值模拟   总被引:4,自引:0,他引:4  
以气体弹射方式发射的潜射导弹,会在导弹尾部产生空泡.本文采用改进的MAC方法成功地模拟了尾空泡的生成、扩张、收缩和拉断过程,揭示了尾空泡周围的流场结构,研究了尾空泡的发展对潜艇固壁所受压力的影响.  相似文献   

18.
The vortex structure of the wake behind a marine propeller was investigated in terms of loading variation by using particle image velocimetry. One hundred and fifty instantaneous velocity fields were ensemble averaged to study the spatial evolution of the wake and the behavior of the tip vortices in the region ranging from the trailing edge to one propeller diameter downstream. The trailing vorticity was found to be related to the radial velocity jump, and the viscous wake was affected by the boundary layers developed on the blade surfaces. A vortex identification method using the swirling strength was employed to extract the location of the tip vortex. The loading on the blade made a clear difference to the contraction angles. Slipstream contraction occurred in the very near wake region, and unstable oscillation occurred because of reduced interaction between the tip vortex and the wake sheet behind the maximum contraction point for each loading condition. The maximum tangential velocity around the tip vortex center revealed the average radius of its core, which was used for calculating the vortex strength. Additionally, variation of the average radius of tip vortices with the change of blade loading was related to vortex tube stretching in the wake region. The nearly constant vortex strength continued up to one diameter downstream for light loading and design loading conditions.  相似文献   

19.
螺旋桨水动力性能的数值预报方法   总被引:1,自引:0,他引:1  
基于速度势的低阶面元法预报螺旋桨的水动力性能。选用四边形双曲面元对桨叶进行离散以消除面元间的缝隙,基本积分方程由格林公式导出。在面元上布置等强度源汇和偶极子。采用线性尾涡并在每个尾涡面元上布置等强度的偶极子。利用Newton-Raphson迭代过程满足桨叶随边非线性等压kutta条件,使桨叶上下表面的压力在随边处一致。利用Morino计算影响函数的解析公式,采用Yanagizawa方法求得物体表面上的速度分布,并对普通桨和大侧斜桨进行了数值预报。  相似文献   

20.
一种计算水翼水动力的三维面元法   总被引:1,自引:1,他引:0  
汪淳  邹早建 《船舶力学》2001,5(3):18-25
本文用Rankine奇点面元法计算了深、浅水中三维水翼的定常升力绕流。水翼的厚度和升力效应分别以水翼表面分布的Rankine源和法向偶极子来模拟,在自由表面上也分布Rankine源,通过满足相应的边界条件和尾缘处的Kutta条件求出这些奇点强度。以在自由表面下作小攻角定常运动的水翼为例进行了计算,计算结果与试验结果和其他计算结果作了比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号