首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对Passat B5轿车前悬架,开发了双筒滑阀式磁流变液减振器,提出了簧载质量的绝对速度及其与非簧载质量间的相对运动速度估计算法,利用实测悬架参数和磁流变液减振器的非线性阻尼力特性,建立了带磁流变液减振器的半主动悬架模型。沥青路面试验结果表明:相对于被动悬架,采用磁流变液半主动悬架后车辆平顺性改善大于10%。  相似文献   

2.
In a previous paper, [3] the random vibrations of simple linear models of automobile suspension were solved with respect to seat elasticity and human sensitivity to vibrations. The present study uses more realistic linear models taking into account the unsprung mass.

Two configurations of masses are investigated: a two-mass system consisting of a sprung mass and an unsprung mass, and a three-mass system having an additional mass which acts as a vibration absorber. The gain in comfort obtained by lowering the natural frequency of the sprung mass is calculated for various two-mass and three-mass models along with other characteristics such as the dynamic tyre load, spring and damper forces and relative motion of the masses.  相似文献   

3.
Modeling to Predict Rollover Threat of Tractor-Semitrailers   总被引:2,自引:0,他引:2  
Summary A predictive model to determine a rollover threat index associated with tractor-semitrailers is proposed. The purpose of this model is to predict the rollover threat sufficiently in advance of the actual event so as to enable the driver to react accordingly. The predictive model is established using simple roll-plane models of the vehicle sprung and unsprung masses in conjunction with online vehicle parameter identification. Using this predictive model, the predicted Load Transfer Ratio (LTR) for the trailer axle can be determined as the rollover threat index. The proposed predictive model and the associated parameter-identification algorithm are verified using a 12-degree-of-freedom vehicle model. It is shown that the identified parameter values are close to the actual ones used in detailed simulation study. Similarly it is shown that the predicted values of the LTR are close to the simulated ones, and hence the proposed approach is potentially suitable as the basis for application in rollover threat assessment.  相似文献   

4.
The random vertical vibration of two linear models of a sprung mass with a passenger on seat is numerically solved. The input signal has a power spectrum of a real road. The acceleration of the passenger is frequency-weighted according to two various criteria. The gain in comfort obtained by lowering the natural frequency of the sprung mass is calculated along with the dynamic and static spring deflections. In addition, a solution of the vibration of the unsprung mass with evaluation of a possible improvement is presented.  相似文献   

5.
ABSTRACT

A two degree-of-freedom vehicle model is developed which incorporates passive, active, and semi-active secondary suspensions. The model is used to demonstrate the trade-offs which are inherent in attempting to provide desirable sprung weight isolation while at the same time controlling unsprung weight motions.

A linear model is used first in order to compare passive and active suspensions in an analytically understandable configuration. The semi-active suspension is inherently nonlinear and is compared to the others through computer simulation. The passive suspension is, of course, the most restrictive in providing simultaneous isolation of sprung and unsprung weight; however, the active suspension is also compromised in providing both functions. The semi-active suspension does an excellent job of tracking its active counterpart.  相似文献   

6.
Semi-Active Control of Wheel Hop in Ground Vehicles   总被引:7,自引:0,他引:7  
A two degree-of-freedom vehicle model is developed which incorporates passive, active, and semi-active secondary suspensions. The model is used to demonstrate the trade-offs which are inherent in attempting to provide desirable sprung weight isolation while at the same time controlling unsprung weight motions.

A linear model is used first in order to compare passive and active suspensions in an analytically understandable configuration. The semi-active suspension is inherently nonlinear and is compared to the others through computer simulation. The passive suspension is, of course, the most restrictive in providing simultaneous isolation of sprung and unsprung weight; however, the active suspension is also compromised in providing both functions. The semi-active suspension does an excellent job of tracking its active counterpart.  相似文献   

7.
A new methodology to design the vehicle GCC (global chassis control) nonlinear controller is developed in this paper. Firstly, to handle the nonlinear coupling between sprung and unsprung masses, the vehicle is treated as a mechanical system of two-rigid-bodies which has 6 DOF (degree of freedom), including longitudinal, lateral, yaw, vertical, roll and pitch dynamics. The system equation is built in the yaw frame based on Lagrange's method, and it has been proved that the derived system remains the important physical properties of the general mechanical system. Then the GCC design problem is formulated as the trajectory tracking problem for a cascade system, with a Lagrange's system interconnecting with a linear system. The nonlinear robust control design problem of this cascade interconnected system is divided into two H control problems with respect to the two sub-systems. The parameter uncertainties in the system are tackled by adaptive theory, while the external uncertainties and disturbances are dealt with the H control theory. And the passivity of the mechanical system is applied to construct the solution of nonlinear H control problem. Finally, the effectiveness of the proposed controller is validated by simulation results even during the emergency manoeuvre.  相似文献   

8.
SUMMARY

This paper proposes a new methodology for designing observers for automotive suspensions. Automotive suspensions are disturbance-affected dynamic systems. Semi-active suspensions are bilinear while active suspensions with hydraulic actuators are nonlinear. The proposed methodology guarantees exponentially convergent state estimation for both these systems. It uses easily accessible and inexpensive measurements. The fact that sprung mass absolute velocity of the suspension cannot be estimated in an exponentially stable manner with such measurements is also demonstrated.

Controllers using estimated states are implemented experimentally on the Berkeley Active Suspension Test Rig. Experimental results for two cases are presented : use of observer states to improve ride quality in an active suspension and use of observer states to reduce dynamic tire loading in a semi-active heavy vehicle suspension.  相似文献   

9.
Accurate lateral load transfer estimation plays an important role in improving the performance of the active rollover prevention system equipped in commercial vehicles. This estimation depends on the accurate prediction of roll angles for both the sprung and the unsprung subsystems. This paper proposes a novel computational method for roll-angle estimation in commercial vehicles employing sensors which are already used in a vehicle dynamic control system without additional expensive measurement units. The estimation strategy integrates two blocks. The first block contains a sliding-mode observer which is responsible for calculating the lateral tyre forces, while in the second block, the Kalman filter estimates the roll angles of the sprung mass and those of axles in the truck. The validation is conducted through MATLAB/TruckSim co-simulation. Based on the comparison between the estimated results and the simulation results from TruckSim, it can be concluded that the proposed estimation method has a promising tracking performance with low computational cost and high convergence speed. This approach enables a low-cost solution for the rollover prevention in commercial vehicles.  相似文献   

10.
Improved Vehicle Performance Using Combined Suspension and Braking Forces   总被引:5,自引:0,他引:5  
This work presents a preliminary investigation into the integration of particular subsystems of an automobile's chassis. The specific focus of this research is the integration of Active Suspension components with Anti-Lock braking (ABS) mechanisms. The performance objective for the integrated approach is defined as a reduction in braking distance over just anti-lock brakes. Several models, of varying degrees of complexity, are presented to determine the effect of modeling accuracy on the potential performance improvement. In the most detailed model, a four degree of freedom Half Car vehicle model is developed along with models for a hydraulic Active Suspension and an ABS system. For both subsystems, actuator dynamics are included. The tire-road interface is modeled using the Magic Formula tire model. Individual controllers are developed for the subsystems and a governing algorithm is constructed to coordinate the two controllers. Simulations of the integrated controller and an ABS system, for each system model, demonstrate a significant increase in performance.  相似文献   

11.
汽车悬架动载性能检测与理论分析   总被引:3,自引:0,他引:3  
韩建保  云志刚 《汽车工程》2002,24(3):250-253,262
本文介绍了表征汽车路面附着性的车轮接地性指数的定义、测量方法和测量设备以及在欧洲通用的评价准则,给出了车轮接地性指数的解析表达式。利用汽车的1/4振动模型,通过计算机数字仿真,分析了汽车簧上质量与簧下质量的比值,减振器效能的损失、轮胎刚度和汽车载荷等对车轮接地性指数的影响。  相似文献   

12.
为了解决某车辆被动悬架系统中减振器由于温升过高而漏油失效的问题,提出了车辆悬架系统机械特性与其热学特性相互耦舍的模型。采用MATLAB/Simulink建立闭环正反馈系统的热一机耦合模型,并通过仿真计算得到某车辆在多种工况以及不同悬架参数条件下减振器的温升特性曲线。研究结果表明:随着路面等级的下降、车速的提高、簧上质量的增大以及悬架刚度的减小,减振器的温度升高;车轮刚度对减振器温升特性影响较小;簧下质量对减振器温升特性无影响。  相似文献   

13.
The chatter of motorcycles appears during braking and consists of a vibration of the rear and front unsprung masses at a frequency in the range of 17-22 Hz depending on the motorcycle. This vibration could be very strong and acceleration of the unsprung masses can reach 5-10 g. The chatter is an auto-excited vibration and this fact explains why it appears suddenly when the mechanism of auto-excitation is generated. This paper presents the chatter phenomenon both from an experimental and a numerical point of view. First, the chatter is defined on the basis of some experimental data from racing motorcycles and from the comments of some racing teams technicians. Then, chatter is analysed in different motion conditions and for different braking styles by means of linear and non-linear simulations of the motorcycle dynamics. A physical interpretation of the phenomenon is also proposed.  相似文献   

14.
Most vehicle suspension systems use fixed passive components that offer a compromise in performance between sprung mass isolation, suspension travel, and tireroad contact force. Recently, systems with discretely adjustable dampers and air springs been added to production vehicles. Active and semi-active damping concepts for vehicle suspensions have also been studied theoretically and with physical prototypes. This paper examines the optimal performance comparisons of variable component suspensions, including active damping and full-state feedback, for “quartercar” heave models. Two and three dimensional optimizations are computed using performance indicators to find the component parameters (control gains) that provide “optimal” performance for statistically described roadway inputs. The effects of performance weighting and feedback configuration are examined. Active damping is shown to be mainly important for vehicle isolation. A passive vehicle suspension can control suspension travel and tire contact force nearly as well as a full state feedback control strategy.  相似文献   

15.
The linear quarter car model is the most widely used suspension system model. A number of authors expressed doubts about the accuracy of the linear quarter car model in predicting the movement of a complex nonlinear suspension system. In this investigation, a quarter car rig, designed to mimic the popular MacPherson strut suspension system, is subject to narrowband excitation at a range of frequencies using a motor driven cam. Linear and nonlinear quarter car simulations of the rig are developed. Both isolated and operational testing techniques are used to characterise the individual suspension system components. Simulations carried out using the linear and nonlinear models are compared to measured data from the suspension test rig at selected excitation frequencies. Results show that the linear quarter car model provides a reasonable approximation of unsprung mass acceleration but significantly overpredicts sprung mass acceleration magnitude. The nonlinear simulation, featuring a trilinear shock absorber model and nonlinear tyre, produces results which are significantly more accurate than linear simulation results. The effect of tyre damping on the nonlinear model is also investigated for narrowband excitation. It is found to reduce the magnitude of unsprung mass acceleration peaks and contribute to an overall improvement in simulation accuracy.  相似文献   

16.
SUMMARY

Most vehicle suspension systems use fixed passive components that offer a compromise in performance between sprung mass isolation, suspension travel, and tireroad contact force. Recently, systems with discretely adjustable dampers and air springs been added to production vehicles. Active and semi-active damping concepts for vehicle suspensions have also been studied theoretically and with physical prototypes. This paper examines the optimal performance comparisons of variable component suspensions, including active damping and full-state feedback, for “quartercar” heave models. Two and three dimensional optimizations are computed using performance indicators to find the component parameters (control gains) that provide “optimal” performance for statistically described roadway inputs. The effects of performance weighting and feedback configuration are examined. Active damping is shown to be mainly important for vehicle isolation. A passive vehicle suspension can control suspension travel and tire contact force nearly as well as a full state feedback control strategy.  相似文献   

17.
Vehicle rollover is a serious traffic accident. In order to accurately evaluate the possibility of untripped and some special tripped vehicle rollovers, and to prevent vehicle rollover under unpredictable variations of parameters and harsh driving conditions, a new rollover index and an anti-roll control strategy are proposed in this paper. Taking deflections of steering and suspension induced by the roll at the axles into consideration, a six degrees of freedom dynamic model is established, including lateral, yaw, roll, and vertical motions of sprung and unsprung masses. From the vehicle dynamics theory, a new rollover index is developed to predict vehicle rollover risk under both untripped and special tripped situations. This new rollover index is validated by Carsim simulations. In addition, an H-infinity controller with electro hydraulic brake system is optimised by genetic algorithm to improve the anti-rollover performance of the vehicle. The stability and robustness of the active rollover prevention control system are analysed by some numerical simulations. The results show that the control system can improve the critical speed of vehicle rollover obviously, and has a good robustness for variations in the number of passengers and longitude position of the centre of gravity.  相似文献   

18.
The paper derives analytical solutions for the global optimum of the ride comfort and tyre grip performance measures for a quarter-car vehicle model optimised both individually and in combination. The solutions are derived for six simple suspension networks comprising one or two springs, one damper and possibly one inerter. The solutions are functions of four vehicle parameters: the sprung mass, the unsprung mass, the tyre stiffness and the static stiffness, of the suspension.  相似文献   

19.
This paper studies the use of the least damping ratio among system poles as a performance metric in passive vehicle suspensions. Methods are developed which allow optimal solutions to be computed in terms of non-dimensional quantities in a quarter-car vehicle model. Solutions are provided in graphical form for convenient use across vehicle types. Three suspension arrangements are studied: the standard suspension involving a parallel spring and damper and two further suspension arrangements involving an inerter. The key parameters for the optimal solutions are the ratios of unsprung mass to sprung mass and suspension static stiffness to tyre vertical stiffness. A discussion is provided of performance trends in terms of the key parameters. A comparison is made with the optimisation of ride comfort and tyre grip metrics for various vehicle types.  相似文献   

20.
An important function of a bogie of a railway vehicle (or of the running gear of guided vehicles in general) is to guide or steer the vehicle along the course of the track while isolating the vehicle and its payload as well as possible from unintended but inevitable imperfections in the position of the track. Against this background, an analytical expression is derived for the low speed transfer function of a bogie, from which conclusions can be drawn regarding the effect of the elastic connections between wheelsets on dynamic behaviour. At higher speeds inertia effects of the unsprung masses have a negative effect on dynamic behaviour, the magnitude of this effect being different for different types of elastic connections. This is also reflected in the critical speed and the interaction between body and bogie. With respect to the wear of wheels and rails on curved track, the range of radii of curves which can be traversed without flange contact and, for smaller radii, the rate of increase of flange force and angle of attack of the leading wheelset are important factors. Some expressions are derived for the effect of the elastic connections between wheelsets on these factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号