首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
海底隧道预注浆加固效果检查与评价   总被引:1,自引:0,他引:1  
以青岛胶州湾海底隧道断层F4-4第一循环预注浆为背景,针对海底不良地质段隧道预注浆效果进行研究。为了合理地检查及评价海底隧道预注浆效果,首先采用公式法和数值法对断层F4-4处的3个断面进行隧道开挖涌水量计算;然后通过布置注浆检验孔,对涌水量进行实地测量;最后,分别将无注浆情况下和注浆情况下用公式法、数值法计算涌水量和实测涌水量进行比较。得出:(1)剖面1和剖面3用公式法的计算结果大于数值法的计算结果,剖面2相反;(2)随着注浆圈厚度的增加隧道开挖涌水量减小,当注浆圈厚度大于5 m后,涌水量的变化趋于平缓;(3)在相同注浆圈厚度的情况下,随着注浆圈渗透系数的减小,隧道开挖涌水量也相应的减小,当注浆圈渗透系数小于一定值时,隧道开挖涌水量的减少并不明显;(4)在断层F4-4开始阶段,用3种方法所得涌水量值相近,同时说明本循环注浆达到设计预期目标。  相似文献   

2.
海底隧道涌水量的预测及其应用   总被引:1,自引:0,他引:1  
海底隧道深埋于海水以下,处于高水压富水区,涌水是海底隧道的最大威胁。涌水量预测是海底隧道防排水设计和施工措施制定的依据。采用理论分析方法,推导了均质围岩中海底隧道注浆圈外表面、衬砌外水压力及涌水量的理论解析公式,并分析了涌水量与各量值之间的关系。通过对地下水渗流场数学模型研究,采用等效连续介质模型用数值方法分析了隧道渗流场的分布,计算出海底隧道的每延米涌水量,并与理论解析解进行了对比分析。结果表明:海底隧道的涌水量不仅与围岩和注浆圈的渗透系数的比值关系密切,而且还与隧道的半径、远场水压力、注浆圈的半径有关;数值计算所得结果与理论解析公式计算得到的涌水量基本一致;为了确保海底隧道施工及运营的安全,应采取“以堵为主,限量排放”的治水方案。  相似文献   

3.
基于流固耦合理论下穿库区隧道围岩稳定性分析   总被引:1,自引:0,他引:1  
以某下穿库区铁路隧道为依托工程,对比分析有无渗流场作用和不同水深条件下,隧道结构应力变化规律以及围岩变形、塑性区和渗流场的变化特性,同时还考虑隧道加固圈厚度和渗透系数对围岩稳定性的影响。研究结果表明:地下水渗流场对围岩变形影响较大,不仅能引起大范围的库底沉降,而且能增大隧道拱顶和拱腰的位移,并且能够减小仰拱的隆起量以及加剧围岩塑性区的范围;隧道的开挖能够对地下水孔隙水压力的分布形成明显的扰动,并且在两拱脚处渗流速度最大,最大塑性区位于横向临时支撑处;注浆加固圈能够改善围岩的受力,隧道最优注浆圈厚度在5m,并且当渗透系数小于围岩渗透系数的1/50时注浆圈加固效果不再明显。  相似文献   

4.
将存在裂隙的岩体视为等效连续介质,建立海底隧道稳定渗流分析计算模型,并对渗流场相关特性进行探讨;结合青岛胶州湾海底隧道工程计算注浆圈对渗流场影响.结果表明:海底隧道防排水应采取“以堵为主,限量排放”的原则;注浆圈堵水效果与其厚度相关,且注浆圈厚度与其渗透系数成正比.但当围岩渗透系数与注浆加固圈渗透系数之比大于100,且注浆圈厚度不小于10 m时,注浆圈渗透系数、注浆圈厚度对隧道涌水量均影响不大;隧道涌水量和控制排水量之差越大,衬砌外水压力越大;为减少涌水量,可以采用注浆圈封堵地下水渗流通道,衬砌外水压力将显著降低.当处于自由排水阶段时,衬砌不承担水压力,隧道涌水量与控制排水量相等.  相似文献   

5.
针对泽雅隧道穿越F10断层破碎带区围岩破碎、涌水量大等问题,为保证隧道的正常施工,确保后期运营安全,采用ABAQUS数值分析软件建立是否考虑流固耦合的模型,分析不同工况下衬砌的力学特性,计算显示渗流的存在导致隧道衬砌最大总应力增加52.15%,衬砌最大弯矩增加75.4%。鉴于涌水对隧道力学特性影响较大,进而结合隧道实际情况进行涌水处治措施比选,选取泄水孔结合径向注浆的处治措施,并运用数值分析手段对注浆圈厚度和注浆材料渗透系数进行优化,计算结果显示注浆层厚度为5~7 m时,注浆材料渗透系数为围岩的30~50倍时施工效果较好。该分析结果有效指导了施工,可为类似工程提供参考。  相似文献   

6.
赵旭伟 《铁道建筑》2022,(3):119-121,131
隧道穿越富水断层破碎带施工风险较大,常采取超前全断面预注浆进行处理.本文依托皖南一工点通过建立渗流数值模型分析了注浆圈不同厚度、渗透系数下隧道周边地下水渗流规律.结果表明:未支护条件下开挖,渗流达到稳定状态后地下水压力呈漏斗状分布;隧道涌水量随着注浆圈厚度增加而减小,注浆圈厚度宜控制在5~8m;减小注浆圈的渗透系数可有...  相似文献   

7.
全断面帷幕注浆加固围岩是水底隧道穿越断层破碎带、海底风化槽等高渗透性岩体常采用的辅助工法。帷幕注浆的主要目的是加固围岩,改善围岩的物理力学性质,降低围岩渗透系数。本文在对注浆加固机理及注浆参数选取研究的基础上,采用三维有限差分FLAC3D数值模拟手段,基于流固耦合的力学模型研究注浆加固圈厚度及渗透系数对围岩稳定性、渗流规律、支护结构受力的影响。研究结果表明:水底隧道洞室开挖对初始渗流场的改变程度及范围与注浆圈渗透系数有直接关系,通过有效注浆不但起到限排堵水的作用,还起到降低地下水渗透体积力、约束位移的作用。  相似文献   

8.
围岩的注浆效果直接影响到海底隧道的施工安全。采用数值计算方法对固定水头的海底隧道在不同注浆圈厚度、注浆圈渗透系数以及排水方式下,隧道的涌水量和衬砌外水压力进行计算与分析。并将数值模拟的结果与轴对称解析解结果进行对比,结果表明:(1)不同的隧道防排水方式对衬砌外压有着明显的影响;(2)注浆圈的径向加固范围对隧道涌水量和衬砌外水压力产生一定的影响,但其效果并不明显;(3)注浆圈的渗透系数对隧道的涌水量和衬砌的外水压力有较大影响。  相似文献   

9.
分析地质复杂的富水山岭隧道的渗流问题,并基于渗流场流固耦合理论,研究采取注浆加固措施,注浆圈对渗流场的影响。通过理论分析、公式推导、数值分析的方法,并结合工程实践,在分析富水区隧道渗流场的基础上,得到以下几个结论:(1)建立富水区深埋隧道渗流简化模型,推导了渗流场下,隧道涌水量、注浆圈外水压力和衬砌外水压力的推导公式;(2)详细分析了注浆圈对涌水量、衬砌外水压力的影响,涌水量和衬砌外水压力之间的影响,FLAC3d数值分析建立模型,通过数值计算,验证了公式推导的正确,这可对类似工程提供有效的指导和借鉴。  相似文献   

10.
水底隧道复合式衬砌水压力影响因素分析   总被引:6,自引:5,他引:1  
富水量较大的水底隧道,隧道防排水系统对于控制隧道涌水量和衬砌外水压力十分重要。采用数值计算方法,研究固定水头下水底隧道不同注浆参数、衬砌渗透系数及隧道控制排水量对衬砌水荷载的影响,并与轴对称解析解结果进行对比验证。研究结论:(1)渗透系数增加和注浆圈厚度减小都致使衬砌外水压力的增加;(2)初衬渗透性的变化对初衬外水压力的影响十分显著;(3)数值解与解析解的结果相差不大,非圆形隧道截面可利用等效半径求解衬砌外水压力和隧道涌水量的解析解,并用于隧道防排水的初步设计;(4)隧道注浆圈参数和初衬渗透系数一定时,增大控制排水量有利于减小二衬背后外水压力。  相似文献   

11.
青岛地铁13号线井冈山路站至嘉年华站区间隧道敷设在近海区域。该区域围岩较为破碎,裂隙水与海水连通,隧道开挖后预测最大单位涌水量达31.2 m3/(m·d),故防水问题十分突出。借鉴类似工程,确定区间隧道初期支护单位渗水量允许值为0.3 m3/(m·d);采用隧道渗水量简化模型计算不同水头高度、围岩渗透系数、注浆圈厚度与渗透性对初期支护渗水量的影响;基于施工空间和效益对注浆圈厚度的限制,确定不同水头高度和围岩渗透性条件下的注浆圈厚度和渗透系数的合理组合;通过现场初期支护渗水量测试,验证了注浆圈参数的合理性。结果表明:Ⅲ、Ⅳ、Ⅴ级强风化—微风化等级岩层中,注浆圈合理厚度分别为3.75~6.00 m、3.5~6.0 m和0.75~2.75 m,合理渗透系数分别为岩层的0.5%~1.2%、1%~2%和2%。  相似文献   

12.
隧道涌水量预测是确保安全施工的重要环节.以某隧道Ⅳ级围岩段为例,展开了隧道Ⅳ级围岩段涌水预测及注浆加固厚度分析,为隧道施工提供技术支持.  相似文献   

13.
以镜像法和渗流力学理论为基础,推导了半无限平面双孔近距平行隧道稳定渗流场的解析解,并与数值解进行了对比验证。对2个平行隧道间距,注浆圈和初期支护的渗透系数、厚度等参数对隧道涌水量和初期支护后水压力的影响进行了分析。研究结果表明:随着2个隧道水平间距的增大,隧道的涌水量和衬砌后水压力逐渐增大;当隧道中心水平间距大于隧道半径的20倍时,水平间距的影响几乎可以忽略不计;随着其中一个隧道埋深的逐渐增大,该隧道涌水量和初期支护后水压力逐渐减小,而邻近隧道涌水量和初期支护后水压力先减小后增大;随着隧道注浆圈渗透系数的减小和注浆圈厚度的增大,隧道涌水量和初期支护后水压力均逐渐减小;随着隧道初期支护渗透系数的减小和初期支护厚度的增大,隧道涌水量逐渐减小,初期支护后水压力却逐渐增大。  相似文献   

14.
山岭隧道高压富水断层破碎带注浆施工技术   总被引:7,自引:1,他引:7  
研究目的:山岭隧道断层破碎带地层岩性复杂,围岩破碎,在地下水补给源充分的条件下,极易发生高压突水等地质灾害,严重影响施工安全和进度。为了有效地预测和治理隧道断层破碎带涌水,防止发生隧道突发涌水等地质灾害,需要对断层破碎的地质特征以及处理措施进行深入研究。研究结论:隧道注浆堵水的方式一般要结合现场开挖揭示围岩情况和前方地层超前预报结果合理选择。隧道高压富水断层破碎带应采取超前预注浆堵水措施,以达到降低围岩的渗透系数,减少地下水流失的目的。注浆结束后应采取施作检查孔等方法对注浆效果进行检查和评定。  相似文献   

15.
宋勤 《铁道建筑技术》2024,(2):72-75+116
TBM隧道穿越微风化凝灰岩、节理密集带及断层破碎带时,极易诱发隧道内涌水,造成地下水位下降、水资源流失、地表塌陷等问题。本文基于泄水孔+深孔联合泄水设计,研究适用于高水压环境下的新型联合泄水式管片。在此基础上,基于等效衬砌法,利用有限元软件系统分析TBM隧道掘进过程中孔隙水压力、开挖面涌水量及地下水位在超前注浆与未注浆两种工况下的演化特征,并使用数据分析软件对隧道总涌水量和地下水位降深关系进行拟合。结果表明:隧道超前注浆造成孔压比随地质岩层渗透系数增大而降低,并使渗流场影响高度和宽度得到有效控制;超前注浆导致隧道在施工过程中开挖面拱顶孔压比基本保持在同一水平直线上,有效降低总涌水量上升速率;地下水位降深随隧道掘进距离增大而增大,且地下水位降深与掘进距离之间呈线性正相关。研究结果可为TBM隧道穿越不良地层诱发地下水环境负效应问题的处置提供技术支持。  相似文献   

16.
对于隧址区地下水位较高的隧道,通常采用堵水限排的方式处理地下水,而在隧道水长期排放的过程中难免对地下水位降深造成影响,超过一定限度必将引起隧址区生态环境的恶化。而隧道整个运营期较长,对隧址区地下水位实时掌控是有必要的。基于对比分析、地下水动力学方法及达西定律确定运营期隧道围岩涌水量及透过初衬涌水量计算方法,根据渗流连续性得出地下水位高度反分析计算方法,在隧道排水量、围岩渗透系数和初衬渗透系数已知的情况下即可求得地下水位高度。通过案例分析及与实际工程的对比确定了该方法的有效性。该方法能为运营期隧道隧址区地下水位高度估算提供参考,从而为隧址区地下水平衡保护提供依据。  相似文献   

17.
针对西部山区深埋隧洞施工涌水难以预测,严重影响施工安全与进度难题,运用现场调查、数值仿真以及现场试验等方法,在对锦屏二级水电站辅3#支洞断面涌水条件进行充分分析的基础上,构建了深埋高渗压隧洞涌水仿真模型并确定了模型参数及边界条件。计算结果表明,当隧洞未注浆时隧洞边墙底部水压力作用系数较大,为隧洞渗水较为严重区域,通过预注浆加固可以降低围岩的渗透系数,通过增大隧洞注浆圈厚度可使注浆圈区域围岩渗透系数减小,从而减小隧洞涌水。  相似文献   

18.
针对水库水的渗流对浅埋暗挖隧道开挖及后期运营的影响问题,采用数值模拟的方法,研究了在各种渗透系数条件以及隧道开挖与地下水渗流影响下的隧道稳定性。分析表明:水库水的渗透以及隧道开挖会对上覆土体的稳定性造成较大影响,甚至可能会导致坍塌事故的发生。随着隧道的开挖,水库水开始发生渗流现象,并造成围岩塑性区快速发育,其中以拱顶位置塑性区范围最大;围岩渗透性越强,隧道顶拱和拱腰部位的渗透应力越小;随着渗透系数的增大,隧道的孔隙水压力、围岩位移、塑性区范围均出现较大的增长,并可能引起隧道的渗流失稳破坏。  相似文献   

19.
基于水力学和弹塑性理论,构建含缓冲层的隧道注浆计算模型,计算隧道支护结构及注浆圈外缘承担的渗水压力及隧道涌水量;研究支护结构、注浆圈及围岩的位移与应力解,利用数值模拟对构建模型的合理性进行验证;以穿越富水断层破碎带的某在建隧道为例,计算并确定其缓冲层厚度。结果表明:增设缓冲层后,支护结构外缘径向应力理论值与模拟值最大误差来自隧道拱顶,为7.3%;涌水量模拟值与理论值较为接近,理论值仅比模拟值小1.4%;随缓冲层厚度增加,支护结构外缘径向应力急剧下降,涌水量缓慢增加,当缓冲层厚度与隧道支护结构外径比值为0.10和0.30时,与无缓冲层时相比,支护结构外缘径向应力分别降低39.63%和118.88%,涌水量分别增加4.70%和14.10%;综合考虑受力与涌水因素,在建隧道缓冲层厚度与支护结构外径比值宜采用0.14。  相似文献   

20.
高水压隧道修建过程中渗流场变化规律试验研究   总被引:3,自引:0,他引:3  
以圆梁山隧道毛坝向斜高水压地段为工程背景,自行研制高水压隧道渗流场试验装置系统,通过室内模型试验,分析隧道修建过程中渗流场的变化规律及作用在二衬背后的水压力作用系数。结果表明:围岩边界不透水时,初始渗流场为静水场,围岩边界透水时,初始渗流场为非静水场;隧道开挖后,水压力等值线是以隧道为中心的圆环形状,无注浆圈时在围岩内的分布较均匀,有5m注浆圈时,等值线在注浆圈内密度较大,在注浆圈外较稀疏;注浆的施作,明显减小了隧道内的排水量,增加了注浆圈外表面的水压力作用系数,注浆圈承担了较大的地下水压力;衬砌施作后,有注浆圈时,衬砌背后的水压力有明显的折减现象,在排水孔断面上的分布呈"葫芦"状,衬砌背后水压力作用系数最小,围岩内和注浆圈外表面的水压力作用系数几乎相同,衬砌背后的水压力在排水系统与水沟连通的位置处最小,在仰拱处较大,在其他位置分布较均匀;隧道排水比越大,衬砌背后的水压力作用系数越小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号