首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
研究目的:为研究不同刚度的高速铁路32 m简支箱梁在动车组列车作用下的工作状态,本文对6个图号的简支箱梁(优化前后的250 km/h有砟轨道、250 km/h无砟轨道、350 km/h无砟轨道)的实测梁体竖向挠跨比、自振频率及动车组作用下的动力响应数据进行分析。研究结论:(1) 32 m箱梁自振频率和挠跨比实测值大于设计值,截面优化后的竖向刚度与优化前相比均有所降低;(2)在同一型号动车组作用下,箱梁振动数值大小与梁体刚度大小呈反比;(3)设计速度250 km/h无砟轨道箱梁横向和竖向振动实测值最大,350 km/h无砟轨道箱梁刚度大于250 km/h有砟轨道箱梁但竖向动力响应数值相当,无砟轨道箱梁振动数值大于有砟轨道;(4)同一图号的32 m简支箱梁,当动车组轴重增大、桥上线路不平顺时,桥梁竖向动力响应与线路平顺状态时相比明显增大,会发生超过通常值的现象;(5)本文研究可为桥梁车桥耦合仿真计算、设计优化、运营性能评估提供参考。  相似文献   

2.
更高速度条件下铁路简支箱梁关键参数研究   总被引:2,自引:2,他引:0  
针对梁体基频、竖向刚度等参数,概述我国高速铁路桥梁参数的研究思路及成果、参数设计及运营现状,采用车桥竖向相互作用程序分析铁路简支箱梁动力响应规律。结果表明,梁体基频为设计参数的控制因素,梁体实测梁体基频高于设计值和规范限值,梁体刚度存在一定的储备;时速350 km的高速铁路简支箱梁可适应更高速度420 km/h的运营要求;420 km/h速度等级高速铁路简支箱梁关键参数可参考350 km/h速度等级相关参数;40 m跨度车桥动力响应明显降低,梁体基频等动力参数不再控制梁体设计,建议开展高速铁路更大跨度简支箱梁应用研究。  相似文献   

3.
随着莫斯科—喀山400 km/h高速铁路设计的逐步推进,国内已有的高速铁路设计规范对于简支梁桥基频限值的相关条文已不能满足设计需求。为避免列车通过桥梁时出现过大振动甚至产生共振,以莫喀高速铁路两种33. 1 m简支梁桥形式(混凝土简支箱梁桥、钢-混结合简支梁桥)为背景,通过车桥耦合振动分析,对简支梁桥的竖向挠度和基频限值进行研究。结果表明:列车活载类型对桥梁竖向基频限值有一定影响,这与车辆的车长和轴重等参数有关;对于跨度L=33. 1 m混凝土简支箱梁桥,中国高速列车对应的竖向基频限值为100/L,俄罗斯设计列车对应的竖向基频限值为140/L; 33. 1 m钢-混结合简支梁比33. 1 m混凝土简支箱梁桥的竖向基频限值更高。本研究成果可为400 km/h高速铁路简支梁桥设计提供参考。  相似文献   

4.
根据对我国高速铁路桥梁动力性能测试数据的分析和相关研究,将高速铁路常用跨度简支箱梁运营性能的检定划分为抽样桥梁的周期性检定、提速桥梁的检定以及运营状态异常或有重大缺陷和损伤等桥梁的检定3类;检定中以梁体的自振特性、竖向刚度(挠度和梁端转角)和竖向动力响应作为简支箱梁运营性能的竖向评定参数,以梁体和桥墩的横向振幅、无砟轨道相邻梁端两侧的钢轨支点横向相对位移作为简支箱梁运营性能的横向评定参数。根据对高速铁路联调联试得到的桥梁动力性能实测样本的统计分析并按可信度97.5%计算,分别给出250和350km·h~(-1)高速列车运行速度下跨度为19.5~39.1m的预应力混凝土简支箱梁运营性能评价参数的建议通常值:梁体竖向自振频率分别为5.0~8.4和5.5~9.9 Hz,竖向阻尼比为2.0%~3.5%,挠跨比分别为1/12 000~1/48 00和1/11 000~1/7 200,梁端竖向转角分别为0.30‰~0.65‰和0.25‰~0.45‰rad,跨中竖向和横向振幅分别为0.20~0.35和0.10~0.15mm,跨中竖向振动加速度为0.25~0.40m·s~(-2),墩顶横向振幅以墩全高与墩横向平均宽度之比在0.5~4.2范围内为条件选取,无砟轨道相邻梁端两侧的钢轨支点横向相对位移为0.5mm。针对预应力混凝土简支箱梁运营性能评价参数的测试方法提出建议。  相似文献   

5.
高速铁路常用跨度简支箱梁优化研究   总被引:3,自引:0,他引:3  
以设计速度350km.h-1、跨度32m的预应力混凝土箱梁为例,在分析梁体基频、刚度和变形的设计值与实测值差异成因的基础上,进行高速铁路常用跨度简支箱梁优化研究。结果表明,对于铺设CRTSⅡ型板式无砟轨道的32m预应力混凝土双线整孔箱梁,实测梁体的自振频率约为设计值的1.4倍,其竖向刚度为设计值的1.7倍,混凝土弹性模量提高、二期恒载降低及桥梁与无砟轨道相互作用分别使梁体基频提高约4.9%~19.9%,4.8%~10.5%和3.6~5.7%;混凝土弹性模量提高、支座摩阻及桥梁与无砟轨道相互作用分别使梁体刚度提高10.1%~43.7%,5.9%~17.7%和7.4%~11.8%。鉴于梁体频率实测值比设计值高出较多,建议设计时梁体频率可取规范限值的0.9;梁体刚度虽可以进一步降低,但应严格控制预应力混凝土梁体的残余徐变变形,确保长期变形不大于现有箱梁的设计值。鉴于跨度32m以上简支梁桥的车桥动力响应显著降低,建议对更大跨度简支梁开展研究。  相似文献   

6.
沪宁线加固后的32 m下承钢板梁的综合动力性能试验,测试其在动车组以200~250 km/h速度通过32 m下承钢板梁时的动力响应和安全指标,主要包括钢梁自振特性、梁体动挠度、横向振幅、竖向振幅、横向及竖向加速度、墩顶横向振幅、端横梁的拼接纵梁位置处动挠度、支座位移、脱轨系数、轮重减载率和轮对横向力等,并结合已有相关规范,对实测结果进行安全性评价.测试结果表明:在动车组作用下,梁体自振频率、梁体跨中挠度、梁体横向振幅、墩顶横向振幅以及脱轨系数、轮重减栽率和轮对横向力、端横梁的拼接纵梁位置处动挠度、主要杆件动力系数均符合相应规范要求,能够满足动车组以200~250 km/h 速度安全通过.  相似文献   

7.
研究目的:梳理常用跨度连续箱梁运营性能的检定技术,为更好地开展高速铁路常用跨度连续箱梁运营性能检定工作提供技术指导。基于近年来在中国开展的高速铁路桥梁动力性能测试的数据和相关理论研究,对桥梁动力性能实测样本进行统计分析,分别给出250 km/h和350 km/h高速列车运营速度下预应力混凝土连续箱梁运营性能评价参数的建议通常值。研究结论:(1)明确了3类高速铁路常用跨度连续箱梁运营性能检定的任务,提出了10项连续箱梁运营性能评定的主要技术参数;(2)梁体竖向自振频率取跨度的幂函数,梁体竖向阻尼比为0.5%~2.0%,挠跨比分别为1/5 500~1/3 500和1/6 000~1/4 000,梁端竖向转角分别为0.60‰rad和0.50‰rad,动力系数分别为1.17~1.26和1.20~1.30,跨中竖向和横向振幅分别为0.25~0.80 mm和0.10~0.15mm,跨中竖向振动加速度为0.25~0.40 m/s2,墩顶横向振幅以墩全高与墩横向平均宽度之比在0.5~4.2范围内为条件选取,无砟轨道相邻梁端两侧的钢轨支点横向相对位移为0.5 mm;(3)本研究成果...  相似文献   

8.
30m简支梁桥墩车桥耦合动力仿真分析   总被引:1,自引:1,他引:0  
根据车桥耦合振动分析理论,运用桥梁结构动力分析程序BDAP,针对城际轨道交通30m简支梁桥墩3种不同墩高方案,采用空间有限元建立全桥动力分析模型,对桥梁空间自振特性进行了计算,并对3种不同墩高方案在CRH2和德国ICE3动车组作用下的车桥空间耦合振动进行了分析,评价3种不同墩高方案的动力性能以及列车运行安全性与舒适性。研究结论表明:(1)3种墩高方案(H=8m、12m、15m)的全桥一阶横向自振频率分别是0.909Hz、1.051Hz和1.034Hz;(2)在CRH2和ICE3动车组以速度160km/h通过时,简支梁跨中竖向振动位移和竖向振动加速度较小,在限值以内;(3)在CRH2和德国ICE3动车组以速度160km/h运行时,车辆竖向和横向舒适性均能达到"优"。说明3种墩高方案具有足够的全桥横向刚度,满足列车时速160km行车的安全性和良好舒适性要求。  相似文献   

9.
常用跨度无砟轨道铁路桥梁动力性能试验研究   总被引:3,自引:0,他引:3  
通过遂渝线常用跨度无砟轨道铁路桥梁的动力性能试验,测试CRH2型动车组和120 km.h-1速度等级试验货物列车通过时的24和32 m预应力混凝土箱梁的自振特性和动力响应。试验结果表明,24和32 m箱梁可以满足这2种列车通过桥梁时的安全性要求;梁体的竖、横向自振频率符合相关规范要求。在这2种列车作用下,梁体跨中挠跨比、挠度动力系数、跨中横向振幅、跨中竖横向加速度、墩顶横向振幅、梁端转角、支座横向动位移、梁缝两侧钢轨支点的竖横向相对位移均符合相关规范要求,但是部分测点的梁体应变动力系数超出设计规范要求。梁体竖横向阻尼比和跨中竖向振幅也均正常。实测24,32 m箱梁跨中挠跨比分别为1/11436和1/12 386,但设计规范值和设计采用值只有1/1 200和1/4 000,且梁端转角只有规范要求的1/10左右,由此可见梁体竖向刚度设计过于保守。  相似文献   

10.
高铁济南黄河特大桥为京沪高铁和太青客运专线四线共建桥,其主桥采用(112+3×168+112)m下承式连续刚性梁柔性拱型式.采用现场测试与有限元分析相结合的方法,对济南黄河特大桥钢桁梁主桥的动力性能、行车安全性和平稳性进行研究.结果表明:桥梁横向、竖向刚度均满足相关规范和设计文件要求;实测梁体横向和竖向1阶自振频率分别为1.57和1.72 Hz,与测试速度内动车组的横向和竖向强振频率相距较远,未出现共振;动车组作用下的梁体最大竖向动力增量为设计荷载的3%,梁体最大竖向振动加速度(20 Hz低通数字滤波后)均小于0.5m·s-2,梁体横向和竖向振幅均较小,能够满足300 km·h-1动车组运行要求;动车组通过主桥有砟区段的安全性指标小于允许值,车体横向和垂向平稳性指标均小于2.5,动车组车辆动力学响应在主桥和引桥不同轨道结构线路区段的实测结果差别不大.  相似文献   

11.
为了研究400 km/h高速铁路列车经过小半径曲线地段时的动力响应特性,建立小半径曲线地段CRH380B车辆-轨道动力学模型,结合列车实测数据验证模型的准确性,随后模拟列车以400 km/h速度通过7 000 m半径曲线路段的动力响应。结果表明:(1)相较于非减振轨道地段,当橡胶浮置板轨道的减振垫铺设刚度为0.019 N/mm3、0.033 N/mm3、0.042 N/mm3、0.1 N/mm3时,轨道减振效果分别为13.4 dB、13.4 dB、12.5 dB、8.6 dB;(2)道床板厚度、减振垫刚度的建议取值分别为300 mm、0.03 N/mm3。研究成果可为400 km/h高速铁路橡胶浮置板轨道结构设计提供理论依据。  相似文献   

12.
针对高铁桥梁运营性能参数传统测试方法存在的数据采集设备安装困难、数据传输不稳定、工作效率低等问题,运用地基雷达非接触、高精度、高频率测量技术,对京沪高铁31.5m预应力混凝土双线简支箱梁进行运营性能检定。结果表明:在动车组时速为300km以上、载客运行状态下,检测得到该桥梁体的自振频率为6.823Hz,挠跨比为1/7 150~1/9 450,梁端转角为0.33‰~0.43‰;单线运行条件下梁体竖向振幅为0.13mm,横向振幅为0.07mm;实测动力系数小于运营动力系数;基于地基雷达的检定结果与传统方法检定结果相吻合;简支箱梁的运行性能参数与相关规范规定的通常值相接近;采用地基雷达能够方便、快速、高效地检定出高铁桥梁的梁体自振频率、梁体跨中挠度、梁端转角、运营动力系数、跨中竖向振幅和横向振幅,为我国高铁简支箱梁运营性能检定提供了新的方法。  相似文献   

13.
以高速铁路32 m混凝土简支箱型桥梁为研究对象,通过有限元软件建立了轨道-桥梁分析模型,采用车辆-轨道-桥梁耦合振动理论,分析了桥梁结构的竖向振动,并将得到的竖向振动响应作为边界条件,导入到箱梁边界元模型中预测箱梁结构噪声。同时基于面板声学贡献分析理论,进行了箱梁梁体的面板声压贡献分析和声功率贡献分析,确定箱梁梁体辐射噪声的最大部位。研究结果表明:列车以200 km/h的速度运行在高架轨道上时,箱梁梁体辐射噪声主要集中0-100 Hz范围内,其中在20 Hz和42 Hz左右有比较突出峰值。同时由面板声学贡献分析可知箱梁梁体主要辐射噪声的部位是箱梁的顶板和两侧翼缘板下面板。  相似文献   

14.
我国高速铁路车站内人行天桥跨越股道连接各站台,当动车组高速通过正线时,列车周围将产生较大的气动力,会对跨越正线上方的人行天桥产生瞬间的推力和吸力,引起天桥结构横向、竖向振动,从而影响旅客通过天桥的舒适性和安全感。本文对国内外人行天桥振动标准进行归纳,分析京沈高速铁路阜新站内跨线人行天桥的自振特性和动车组通过时人行天桥的动力性能,研究人行天桥在脉动风激励作用下的振动特点、振动水平和振动分布规律,为我国高速铁路人行天桥振动舒适度限值的制订提供技术支持。研究结果表明:高速铁路人行天桥竖向振动加速度参考限值为1. 0 m/s2,横向振动加速度参考限值为0. 3 m/s2;列车行车速度大于300 km/h时,天桥跨中桥面中心区域竖向加速度超过参考限值。建议列车速度大于300 km/h时通过增大高速铁路跨线人行天桥竖向刚度、阻尼等方法减小其竖向振动,并采取优化天桥外形、增大天桥高度等方法减小脉动风的影响。  相似文献   

15.
研究目的:400 km/h等级高速铁路的规划设计是我国现阶段高速铁路建设与发展的重要目标。目前,尚未有400 km/h高速铁路纵断面参数设计标准的研究。在满足高速列车行驶安全与旅客乘坐舒适条件下,本文对400 km/h等级高速铁路纵断面参数进行了设计与验证,为后续工程应用提供理论依据。研究结论:(1)相同坡度差、夹直线长度条件下,列车垂向振动加速度最大值随竖曲线半径的增加而减小,建议400 km/h高速铁路最小竖曲线半径取值为30 000 m;(2)当竖曲线半径≥20 000 m,车体垂向振动加速度最大值数值受坡度差值影响很小;(3)车体垂向振动加速度随着夹直线长度的增加而逐渐消散,叠加振动减小,建议400 km/h高速铁路夹直线长度最小取值为200 m;(4)本文研究可为400 km/h高速铁路纵断面参数设计提供技术支撑。  相似文献   

16.
简支梁自振频率的合理取值对保证列车的运营安全及舒适性尤为重要.本文比较了车桥耦合作用与移动荷载列车作用下简支梁的动力响应;基于移动荷载列模型,计算得出不同列车作用下32 m与40 m简支梁的动力系数与梁体竖向加速度;以桥梁的实际运营活载效应小于设计活载效应为准则,提出了400 km/h高速铁路常用跨度混凝土简支梁的竖向...  相似文献   

17.
针对24,32,40,48和64m简支梁,以及CR400AF型中国标准动车组,建立移动荷载列-桥梁系统模型,开展动力仿真计算,分析不同时速的动车组驶过不同频率、不同跨度简支梁时的梁体动力响应,并综合容许动力系数要求与规范规定,进行时速400km及以上高速铁路更大跨度区间简支梁的竖向频率限值研究.结果表明:梁体动力系数从...  相似文献   

18.
文章基于CR400型动车组车辆结构参数和成渝中线线路设计参数,建立了考虑车辆牵引与制动特性的高速铁路车辆-线路耦合动力学模型,对400 km/h高速铁路车辆限速通过曲线时的动力学性能进行了分析.研究结果表明:(1)CR400型动车组在成渝中线正线区间上运行时,安全性指标均低于限值,适当的欠超高设计更有利于提升车辆曲线通...  相似文献   

19.
以某设计速度400 km/h的高速铁路4种典型路基段结构为研究对象,采用风车路耦合动力分析方法,运用ANSYS和多体动力学软件SIMPACK分别建立路基和列车模型,分析CRH380动车组在环境风速20~40m/s区间工况,以速度400 km/h通过时车辆的动力响应。根据评价准则提出风致行车安全控制指标。结果表明:车体横向加速度反映列车横风稳定性,可以作为风致行车安全的控制指标;脱轨系数随着风速增大而增大,在风速不超过40 m/s条件下,均未达到上限值0.8;4#路基段可以承受的环境风速最大,风致行车安全的效果最好;背风侧的车辆响应指标均明显好于迎风侧,对于横风影响下的动力仿真分析,应将迎风侧作为主要研究对象。  相似文献   

20.
A型高墩大跨混凝土连续刚构桥车桥动力分析   总被引:1,自引:0,他引:1  
研究目的:针对A型高墩大跨混凝土连续刚构桥,具有墩高、跨度大、墩身体量轻、刚度相对小等特点,分析车桥耦合动力响应,得出车桥动力性能指标,探讨桥梁结构横向自振周期与车桥动力响应的关系。研究结论:(1)结构基频为纵向振动,频率为0.401 Hz,第二振型为横向振动,频率为0.657 Hz,一阶竖弯频率为1.125 Hz;(2)客车以200 km/h运行,车辆运行安全性和平稳性满足要求,横向及竖向舒适度指标均为优良;货车以120 km/h运行,能满足车辆运行安全性和平稳性要求;A型高墩能较好地解决大跨度连续刚构桥的动力性能问题;(3)桥梁横向第一自振周期对桥梁横向振幅影响较大,对梁体竖向、横向加速度影响规律不明确;(4)车辆响应对桥梁横向自振周期不敏感,采用桥梁横向自振周期来反映桥上车辆的运行安全性、舒适性和平稳性的规律性不明显,两者的相关性不显著;(5)本文分析成果对高墩大跨铁路桥梁设计具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号