首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
桥梁温度跨度对双块式无砟轨道无缝线路的影响研究   总被引:1,自引:1,他引:0  
为研究桥梁温度跨度对桥上双块式无砟轨道无缝线路的影响,运用线板桥墩一体化模型,计算不同温度跨度下,分别采用常阻力和小阻力扣件时的钢轨纵向力、道床板纵向力、抗剪凸台纵向力、梁轨相对位移以及钢轨断缝,分析桥梁温度跨度对轨道结构强度与变形的影响。结果表明:(1)随着桥梁温度跨度的增加,钢轨伸缩、挠曲、制动附加力和梁轨相对位移均增大;道床板、抗剪凸台纵向力和钢轨断缝保持不变。(2)扣件阻力减小时,轨道结构纵向力均减小;但梁轨相对位移和钢轨断缝增大。(3)为保证钢轨强度要求,当桥上铺设常阻力扣件时,桥梁温度跨度限值可取135m;当桥上铺设小阻力扣件时,桥梁温度跨度限值可取250m。  相似文献   

2.
研究目的:目前的梁轨伸缩力算法较多使用常量阻力计算模型,当跨径很大时,有可能不存在有力学意义的解。为了得到准确的桥上无缝线路钢轨在温度作用下的伸缩力解析算法,解决桥梁温度跨度取值以及合理的纵向阻力选择问题,本文采用非线性纵向阻力模型,根据扣件进入塑性变形区的位置将无缝线路分成若干个区段,通过建立平衡微分方程组,求解得到钢轨位移及伸缩力。研究结论:(1)依照无缝线路规范设计条件,计算了不同纵向阻力、不同跨度桥梁上钢轨最大应力以及梁轨最大相对位移;(2)在不考虑制动力的情况下,可得出基于钢轨强度限值下不同纵向阻力对应的温度跨度限值;(3)以70 mm和90 mm作为断缝宽度限值,得出线路纵向阻力的最小取值分别为17 N/(mm·线)和13 N/(mm·线);(4)本文算法可为桥上无缝线路的桥梁温度跨度及线路纵向阻力的选择提供依据。  相似文献   

3.
为研究城市轨道交通简支梁桥墩顶纵向刚度限值,建立20孔跨度均为30 m简支梁桥无缝线路计算模型,以钢轨强度、梁轨(板)相对位移和钢轨断缝值为控制指标,分析了墩顶纵向刚度对桥上无缝线路受力特性的影响。研究表明:随着墩顶纵向刚度增大,钢轨伸缩附加力增大,钢轨制动附加力和梁轨(板)相对位移降低;对于简支梁桥,控制墩顶纵向刚度的决定性指标是梁轨(板)相对位移;考虑一定的安全余量,建议30 m简支梁桥墩顶纵向刚度限值为双线240 kN/cm。为降低工程造价,可基于梁轨相互作用原理确定桥墩纵向刚度限值。  相似文献   

4.
研究目的:为对比桥上铺设不同无砟轨道时对应无缝线路受力规律,本文基于有限元方法及梁轨相互作用原理,分别建立大跨度桥上纵连板式、单元板式及双块式无砟轨道有限元模型,分析实测温度工况及制挠力耦合作用下,不同无砟轨道对应的无缝线路受力规律及桥梁理论最大温度跨度,并比较制动墩墩顶刚度、扣件阻力等参数对无缝线路受力及最大温度跨度的影响。研究结论:(1)相同桥梁温度跨度下,双块式无砟轨道钢轨附加应力最大,纵连板式无砟轨道钢轨附加应力最小,且纵连板式无砟轨道钢轨附加应力远小于铺设单元板式或双块式无砟轨道时对应钢轨附加应力;(2)采用常阻力扣件时,当制动墩墩顶刚度由1 500 k N/cm增大到8 000 k N/cm时,单元板式无砟轨道最大温度跨度由93.3 m增大到105 m,双块式无砟轨道最大温度跨度由60 m增大到75.8 m,而纵连板式无砟轨道钢轨附加应力受墩顶刚度的影响很小;(3)纵连板式无砟轨道对应桥梁最大温度跨度需同时考虑钢轨附加应力及墩顶纵向位移限值;(4)扣件阻力大小对单元板式及双块式无砟轨道钢轨附加应力影响较大,采用小阻力扣件后,两者对应最大温度跨度分别增大约1.5、2.0倍,小阻力扣件可以有效的减小单元板式及双块式无砟轨道钢轨附加应力;(5)本研究成果可为不同无砟轨道应用及对应桥梁跨度设计提供参考。  相似文献   

5.
基于梁轨相互作用原理,建立桥上无缝线路线桥墩一体化模型,研究主桥铺设小阻力扣件下单线连续梁桥墩纵向水平刚度的限值。研究结果表明:在主桥铺设小阻力扣件下,钢轨伸缩附加应力最大值与连续梁温度跨度及桥墩刚度近似呈线性关系;轨道结构稳定性和钢轨断缝对桥墩刚度限值均不起控制作用,桥墩刚度限值仅由钢轨强度控制;连续梁温度跨度较大时,桥墩刚度限值与温度跨度近似呈线性关系,对于温度跨度为240 m的连续梁,轨温变化幅度为50℃、40℃和30℃时,连续梁固定支座处桥墩刚度限值分别为1 282、522、226 k N/(cm·线)。  相似文献   

6.
基于梁轨相互作用原理,采用有限元方法建立线-桥-墩一体化计算模型,以多跨简支梁和连续梁为例,分析不同墩台刚度对桥上无缝线路计算的影响。计算结果表明:钢轨伸缩力与伸缩位移、墩台纵向力均随着墩台纵向水平刚度的增大而增大,但增加幅度逐渐减缓;墩台自身的纵向水平位移会改变梁轨系统的纵向受力情况,当桥梁墩台自身位移较大时,应在桥上无缝线路纵向力计算中考虑其作用;钢轨挠曲力随着墩台刚度增大而增大,桥墩纵向水平刚度对钢轨制动力及梁轨相对位移的影响较为明显,应据此设定其对墩台最小水平刚度的限值;墩台刚度越大,钢轨断缝值越小。为满足断缝值不超限,桥梁墩台设计时应合理确定其纵向水平刚度值。  相似文献   

7.
在计算桥上无缝线路的纵向阻力时,阻力模型通常采用无缝线路设计规范中建议的双折线纵向阻力模型,即有载与无载分别考虑后再线性叠加,未考虑钢轨的非线性行为。在计算方法上,工程中常采用有限元模型进行计算,有限元法建模效率较低、不便于对各设计参数的更改。为准确快速求得高速铁路整体式桥上梁轨相互作用下的钢轨附加力、钢轨位移、钢轨弹塑性分界点及整体桥墩顶位移等参数值的大小,提出更贴近于桥上钢轨实际受力的多折线纵向阻力模型,并采用建立微分方程组的数值解法,通过建立具有变化规律的平衡矩阵式来求解桥上无缝线路钢轨纵向阻力值的相关参数。研究分别给出了有载、无载工况下求解整体式桥上钢轨附加应力值的规律性矩阵式,经有限元法验证,得到该方法下的温度、制动力附加应力值的误差均较小,分别为1.6%和0.5%。并结合规律矩阵式得到同时考虑有载与无载下的非线性附加力的计算方法,非线性叠加与线性叠加两方法下的总附加应力计算差值随着制动/牵引力下的梁轨相对位移值的增大而增大,当梁轨相对位移小于1.8 mm时,2种方法误差少于5%,可忽略不计,但随着梁轨相对位移的进一步增加,非线性阻力模型计算的结果则更贴近于实际。  相似文献   

8.
基于梁轨相互作用原理,通过改变连续刚构桥墩的刚度值,计算不同桥墩刚度对钢轨伸缩附加力、梁轨快速相对位移和墩顶位移的影响。分析可得:有砟轨道结构中,刚构墩刚度取值的大小对梁轨快速相对位移影响最明显,在温度跨度较大的连续刚构桥中,应考虑到桥墩刚度对梁轨快速相对位移的影响。对于(64+4×116+64)m和(72+3×116+72)m刚构桥,桥墩刚度不宜小于750 kN/cm/线。对桥梁结构进行优化设计时,梁跨应尽可能对称布置,以降低桥墩刚度对钢轨纵向附加力的影响。  相似文献   

9.
铁路桥梁设计过程中,尤其是高墩铁路桥梁结构,为了满足规范规定的墩顶刚度标准,下部结构往往体量大,经济指标不合理,且有些非标准大跨度桥梁结构墩顶刚度取值并没有标准可以执行。桥上无缝线路轨道力与铁路桥梁下部结构刚度有着密切联系,互相影响。文章以梁轨相互作用原理为依据,通过建立常用跨度简支梁及其桥上无缝线路共同作用的有限元模型,探究轨道力与墩顶刚度的关系,分析墩顶刚度合理取值的判别标准。结论表明:在保证无缝线路轨道结构和桥梁结构受力安全的前提下,墩顶刚度取值可以适当减小,并给出了非标准跨度简支梁墩顶刚度取值的计算方法和控制标准。  相似文献   

10.
为科学合理地确定不设钢轨伸缩调节器的桥梁温度跨度,通过建立线桥墩一体化计算模型,研究各种因素对有砟桥上无缝线路最大温度跨度的影响。研究结果表明:钢轨顶面垂磨增大,最大温度跨度逐渐减小;墩顶纵向水平位移增大,最大温度跨度与墩顶位移近似成等比例减少;制动力对钢轨升温幅度较大时的最大温度跨度有一定影响;大机维修所确定的温度跨度要比大机清筛的小;为减缓地震对桥梁纵移、横移的影响,高速铁路桥梁设计中应采用防落梁装置。综合分析后,考虑了轨温变化幅度、墩高2个影响因素,得出了桥梁温度跨度极值的建议值,如最大墩高小于30m,轨温变化幅度分别为30,40和50℃时,温度跨度极值分别建议为320,300和280m。  相似文献   

11.
针对城市轨道交通中新应用的双线U型梁和传统的双线箱型梁两种不同形式桥梁,用有限元法计算分析桥上无缝线路附加挠曲力及附加挠曲位移的分布,着重研究线路纵向阻力、桥梁跨度和桥墩刚度等参数变化对桥上无缝线路钢轨受力、桥墩受力及桥梁挠度的影响。研究结果表明,线路纵向阻力、桥梁跨度对钢轨挠曲力的影响较大,而桥墩纵向刚度对钢轨挠曲力的影响较小,为城市轨道交通设计提供理论参考依据。  相似文献   

12.
为确定常用跨度简支梁桥上50 m长钢轨合理的预留轨缝,基于梁轨相互作用原理,建立了钢轨-接头-轨枕-桥梁-墩台一体化计算模型,并从5×32 m简支梁桥上梁轨相互作用引起的钢轨及桥墩纵向受力两方面验证了模型的正确性。以某专用线上的10×32 m简支梁桥为例,分析了轨温变化幅度、基本轨接头阻力、护轨阻力等对桥上50 m长钢轨接头轨缝改变量的影响。研究结果表明:梁轨相互作用对桥上50 m长钢轨接头轨缝会产生显著影响,并且影响程度与接头所处位置相关;轨缝改变量随着基本轨接头阻力和护轨扣件阻力的增加而降低,受护轨接头阻力和墩台纵向水平刚度的影响较小;跨度为24 m、32 m简支梁桥上铺设50 m长钢轨的接头螺栓扭矩应按照900N·m设计,且运营中还应该加强螺栓扭矩检查,确保降幅不超过15%。  相似文献   

13.
研究目的:因桥上无缝线路梁轨相互作用较为复杂,桥梁和轨道结构的受力与变形特性成为国内外学者的热点研究问题。为研究温度荷载、列车荷载和制动荷载作用下轨道结构的受力与变形规律及影响因素,根据嵌入式轨道的特点,本文通过建立嵌入式轨道桥上无缝线路有限元模型,计算伸缩力、挠曲力和制动力三种工况下轨道结构的受力与变形情况,并分析梁体温差、高分子材料纵向阻力和墩台纵向刚度对伸缩力的影响。研究结论:(1)嵌入式轨道的线路纵向阻力和垂向刚度均为线性变化,且轨板相对位移限值为6.2 mm;(2)轨道结构的受力和变形均随着梁体温差的增加而线性增加,允许梁体温差为38℃;随着线路纵向阻力的增加,钢轨纵向位移和伸缩力逐渐增大,而轨板相对位移则逐渐减小;桥梁墩台纵向刚度对轨道结构的受力和变形影响较小;(3)在挠曲力和制动力工况下,轨板相对位移和钢轨附加力均较小,故在设计时应重点关注伸缩力工况;(4)当梁体温差和轨温变化幅度为30℃时,钢轨强度和轨板相对位移均满足要求,因此在32 m简支梁上铺设有轨电车嵌入式轨道无缝线路是可行的;(5)本研究成果对桥上有轨电车嵌入式轨道设计具有参考价值。  相似文献   

14.
研究目的:日照温度作用下,桥梁墩身向阳和背阳侧产生温差,从而导致墩顶发生横向位移,进而引起梁体、轨道横向偏移,最终使桥上钢轨产生横向不平顺。为指导桥墩设计和轨道养护维修,本文以高速铁路双块式无砟轨道-简支梁桥为研究对象,采用单位载荷法,分析墩顶横向位移与温差、墩高、墩宽的关系;基于线-桥-墩相互作用原理,推导墩顶横向位移与钢轨变形的映射关系,并提出相应的解析表达式。研究结论:(1)日照温度作用下桥墩墩顶位移与截面方向温差和墩身高度平方成正比,与其截面横向宽度成反比;(2)钢轨随桥墩墩顶横向移动产生的变形与其横向位移成正比,并与扣件间距、钢轨横向抗弯刚度等参数有关;(3)基于墩顶横向位移和钢轨变形之间映射关系的解析表达式,可以根据墩高、墩宽、桥墩温度差等参数,十分方便地得到钢轨横向变形曲线,对于指导桥墩设计和轨道养护维修具有参考价值;(4)本研究成果对于研究桥上其他单元式无砟轨道桥墩横向位移与钢轨变形的映射关系具有参考价值。  相似文献   

15.
广珠城际简支梁墩顶纵向水平线刚度限值研究   总被引:1,自引:0,他引:1  
桥上无缝线路设计是跨区间无缝线路设计的重要组成部分,在桥上铺设无缝线路必须进行梁轨相互作用分析,并对桥梁和轨道结构进行检算。桥上无缝线路钢轨、墩台的纵向力及位移的分布很大程度上取决于桥梁墩台纵向水平线刚度。针对广珠城际铁路的活载类型、轨道结构类型等具体情况,根据桥墩纵向水平线刚度的控制条件,对常见跨度的简支梁桥墩纵向水平线刚度的限值进行了分析计算。  相似文献   

16.
温度跨度对桥上无缝线路钢轨伸缩附加力影响很大,是设置钢轨伸缩调节器的关键因素之一。基于连续刚构梁桥墩纵向水平刚度以及两侧简支梁支座布置对桥上无缝线路受力变形的影响,采用理论分析和ANSYS有限元软件研究了连续刚构梁桥上无缝线路温度跨度。结论表明刚构墩刚度越大,温度力作用下钢轨伸缩附加力越小,桥梁变形越小,但影响很小;制动力作用下,梁轨快速相对位移和钢轨制动附加力越小,但影响较大。分析时一般可将连续刚构梁桥简化为仅有一个固定支座且位于其几何中点处的连续梁,温度跨度即为该点到相邻一跨(联)桥上固定支座之间的距离,分析计算精度可满足桥上无缝线路设计检算的需要。研究结果对我国大跨度连续刚构桥桥上无缝线路的建设有着重要的指导作用。  相似文献   

17.
针对现有规范中断轨力取值偏于保守的现状,以铁路常用跨度32 m简支梁桥为研究对象,运用ANSYS有限元软件,建立梁-轨相互作用三维模型,进行墩顶断轨力合理取值研究.结果表明:当考虑墩顶纵向线刚度、参与受力的钢轨股数、轨温差和活动支座摩阻力等因素影响时,计算得到的墩顶断轨力均小于规范值,其中影响最大的是参与受力的钢轨股数...  相似文献   

18.
桥上CRTSⅡ型纵连板式无砟轨道在运营过程中由于温度跨度和温度力较大,钢轨受力大而存在断轨危险。利用有限元软件建立了线-板-桥-墩一体化分析模型,研究断轨力作用下梁轨相互作用的影响。结果表明:非折断钢轨、常阻力扣件、轨下基础对折断钢轨的收缩具有约束作用,使得相同位置处同线及邻线非折断钢轨受到较大的附加拉力,同时断轨力对钢轨强度及断缝值影响较小;检算底座板强度及端刺位移时,根据经验将轨道板、底座板的纵向伸缩刚度折减系数取0.3;对不同部件进行强度检算时应首先确定其最不利断轨位置。  相似文献   

19.
桥上无砟轨道受力比较复杂,桥上无砟轨道无缝线路的稳定性直接影响高速列车的行车平稳与安全。基于有限元法和梁轨相互作用理论,建立了6×32 m混凝土简支梁桥上CRTSⅠ型板式无砟轨道无缝线路空间耦合模型,研究温度荷载作用下钢轨、轨道板及底座板的受力变形特性,并对相关影响参数进行分析。结果表明:在温度荷载作用下,钢轨伸缩力的峰值出现在桥梁墩台及跨中,钢轨的纵向位移呈现先增后减的趋势,在中间两跨达到最大值,钢轨和轨道板的纵向伸缩趋势基本一致,表明扣件起到了很好的约束作用;桥上采用小阻力扣件可改善桥上无缝线路梁轨相互作用,但要充分考虑轨板相对位移不能过大,保证钢轨在桥台处的爬行能够得到有效控制;从减小桥上轨道结构伸缩力及纵向位移考虑,桥梁墩台固定端纵向刚度不宜过大。  相似文献   

20.
研究目的:桥墩纵向刚度合理限值是铁路桥梁设计和轨道设计的关键参数,本文考虑桥上板式无砟轨道多层结构间的非线性相互作用关系,建立简支梁桥-无砟轨道-无缝线路空间耦合模型,分析桥墩纵向刚度对不同跨度简支梁桥上无砟轨道无缝线路纵向力学特性的影响,提出不同跨度简支梁桥的桥墩纵向刚度合理限值。研究结论:(1)简支梁跨度L≤64 m时,桥墩纵向刚度的控制指标为梁轨相对位移值;跨度超过64 m后,钢轨强度成为桥墩纵向刚度的控制指标;(2)铺设常阻力扣件时,32 m、48 m、64 m、80 m和96 m简支梁桥墩纵向刚度限值分别为210 k N/cm、500 k N/cm、700 k N/cm、1 500 k N/cm和2 000 k N/cm;(3)综合考虑结构安全性和工程经济性,对于80 m和96 m简支梁桥,可通过全桥铺设小阻力扣件来大幅度降低桥墩纵向刚度;(4)本研究成果可用于指导无砟轨道简支梁桥的桥墩设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号