首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
基于多体动力学软件UM建立了CRH2型车的多体动力学模型,分析了不同工况下车辆运行的平稳性,研究了悬挂参数对平稳性的影响.仿真分析表明:车辆平稳性指标随着运行速度增大而增大;减小空气弹簧水平刚度可改善横向平稳性,适当降低一、二系垂向刚度和二系垂向阻尼有利于提高垂向平稳性.  相似文献   

2.
为了研究高速列车车轮扁疤引起的动力学问题,根据多体动力学理论和等效轨道激扰法,建立了我国某型高速车辆的动力学模型及车轮新、旧两种扁疤模型.应用车轮轮径变化扁疤模拟法对车轮扁疤进行模拟,并对高速车辆轮轨冲击动力效应进行仿真分析.结果表明:新、旧扁疤轮轨冲击力规律不同,旧扁疤产生轮轨垂向冲击力随车速的增大而增大,在高速运行条件下,远大于新扁疤产生的垂向冲击力;当车速分别高于200和250 km/h时,车轮扁疤长度需要限制在35和30 mm以内.   相似文献   

3.
牵引杆附加刚度效应对地铁车辆垂向动力学性能的影响   总被引:1,自引:0,他引:1  
为了解决地铁车辆踏面过度磨耗、剥离、失圆及产生的车体垂向动力学性能超标问题,通过车辆结构理论分析及动力学仿真,研究了牵引杆的附加刚度效应.结果表明:车辆制动系统不是导致上述问题发生的主要原因,短牵引杆及其两端大的连接刚度引起的附加刚度效应是导致车体对垂向振动冲击敏感的根源;在车辆制动或通过曲线轨道时,牵引杆装置的附加刚度效应可降低二系悬挂系统的隔振能力;考虑牵引杆的附加刚度效应时,车辆对垂向振动的冲击响应显著增大;将牵引杆的连接刚度减小到现有刚度的25%时,可以降低车体对垂向冲击的响应,改善车辆的垂向动力学性能.  相似文献   

4.
为了降低高速铁路桥上结构的振动与噪声水平,以我国CRH2型高速车辆和32 m跨度高速铁路简支箱梁及CRTS I型板式无砟轨道为对象,建立高速车辆-无砟轨道-桥梁耦合振动分析模型,分析比较了不同行车速度下无砟轨道减振层刚度对车轨桥系统动力响应的影响,为桥上减振型板式轨道动力学参数设计提供参考。计算结果表明,桥上采用减振型板式轨道可显著降低轨道板垂向振动加速度,在本文计算条件下其最大加速度幅值较无减振层时减小了57%以上;减振型板式轨道能稍微降低轮轨动力作用,可减小简支箱梁垂向振动加速度20%左右;较低的减振层刚度增大了轨道板垂向振动位移,不利于高速行车安全,而过大的减振层刚度不能有效降低轨道结构振动,综合考虑后建议桥上减振型板式轨道弹性垫层刚度在100~200 MN/m3之间选取。  相似文献   

5.
高速列车运动稳定性设计方法研究   总被引:7,自引:1,他引:6  
从车辆结构特征和系统参数对高速列车运动稳定性影响的关系出发,提出了合理的遏制车辆蛇行失稳控制策略,并利用灵敏度分析对控制策略进行了验证.针对系统参数的非线性影响、工程应用以及服役特性,探讨了临界失稳速度设计目标值的确定原则;从车体质量、二系悬挂刚度及阻尼、轴箱纵横向定位刚度等悬挂参数的工程应用角度,给出了参数的选择范围;从列车运动稳定性对参数灵敏度和参数对动力学性能的影响,提出了基于灵敏度的优化原则和性能均衡原则,并引入了运动稳定性的可靠度设计理念.   相似文献   

6.
一系垂向悬挂对重载货车轮轨动力作用的影响   总被引:1,自引:0,他引:1  
为了实现机车车辆低动力作用,基于车辆/轨道耦合动力学原理,应用车辆与线路最佳匹配设计方法和车辆/轨道空间耦合动力学模型,仿真分析了重载货车一系垂向悬挂对轮轨动力作用的影响,优化了一系悬挂参数,降低了重载货车轮轨动力的相互作用.研究结果表明:一系垂向刚度对车辆轮轨动力作用影响甚微,一系垂向阻尼在高量值范围增加阻尼值,减轻轨道结构的振动,加剧车辆本身振动;重载货车一系垂向阻尼取50~500 kN.s/m为宜.  相似文献   

7.
车辆-轨道系统耦合高频振动的研究   总被引:3,自引:0,他引:3  
车辆-轨道垂向耦合振动是车辆-轨道耦合动力学主要研究课题.建立了车辆-轨道垂向耦合Timoshenko梁高频振动模型,运用快速积分方法编制仿真程序,对扁疤激励情况下的轮轨垂向高频振动进行系统仿真与分析,并与Eu ler梁模型仿真结果进行比较.结果表明,车辆速度与车轮扁疤的长度对轮轨系统振动有很大的影响;在高频情况下,进行振动与噪声的研究时,建议使用Timoshenko梁模型.  相似文献   

8.
车辆-轨道垂向耦合振动是车辆-轨道耦合动力学主要研究课题.建立了车辆-轨道垂向耦合Timoshenko梁高频振动模型,运用快速积分方法编制仿真程序,对扁疤激励情况下的轮轨垂向高频振动进行系统仿真与分析,并与Euler梁模型仿真结果进行比较.结果表明,车辆速度与车轮扁疤的长度对轮轨系统振动有很大的影响;在高频情况下,进行振动与噪声的研究时,建议使用Timoshenko梁模型.  相似文献   

9.
以往高速铁路研究的轨下结构过于简化,且只考虑了轨下弹性垫板单一变量对轨道动力学的影响,而不能综合考虑刚度和阻尼参数对轨道结构动力学性能的影响.在车辆-轨道耦合系统动力学理论的基础上,运用动力学软件SIMPACK建立高速车辆-板式无砟轨道模型,通过对原有单层轨道拓扑优化后设置分层,分析轨下弹性垫板刚度和阻尼对板式无砟轨道结构动力学性能影响.研究结果表明:轨道结构细化分层分析与实际高速铁路板式轨道结构更加相符,能够更准确的反映轨道局部结构对轨道垂向动力学性能的影响;垫板老化后的刚度增大加剧轮轨相互作用,降低轨道垂向位移,减弱钢轨的振动,同时导致轨道板振动加强;垫板失效后的阻尼减小同样增强轮轨相互作用,使得轨道垂向位移和振动加速度增大;轨下垫板刚度的敏感参数顺序为轨道板垂向加速度、钢轨垂向加速度、轨道板垂向位移、钢轨垂向位移和轮轨力.  相似文献   

10.
侧风下高速列车车体与轮对的运行姿态   总被引:3,自引:0,他引:3  
应用流体动力学理论,建立了高速列车空气动力学模型,计算了作用于高速列车车体上的气动力和气动力矩;应用多体动力学理论,建立了车辆系统动力学模型,分析了在不同风向角、侧偏角与合成风速下高速列车头车车体和轮对的运行姿态。计算结果表明:在不同侧风环境下,头车车体始终向背风侧横摆和侧滚;当风向角为90°时,车体的横向位移和侧滚角最大;当列车车速为350 km.h-1,侧风风速分别为13.8、32.6 m.s-1时,列车头车车体最大横向位移分别为74.2、171.7 mm,最大侧滚角分别为3.1°和8.4°;当列车车速为200 km.h-1,风速不小于32.6 m.s-1,且风向角为90°时,列车头车一、二位轮对均向背风侧横移,背风侧车轮易发生爬轨现象,三、四位轮对均向迎风侧横移,三位轮对迎风侧车轮易发生爬轨现象;四位轮对的横移量和摇头角均小于前三位轮对,相对安全。  相似文献   

11.
车辆系统空气弹簧失气安全性分析   总被引:1,自引:0,他引:1  
建立了具有刚度衰变特性的空气弹簧失气模型和非线性粘滑接触模型,结合车辆系统动力学,模拟空气弹簧失气动态过程与失气后的应急状态,分析了空气弹簧失气后车辆系统的稳定性与空气弹簧突然失气对车辆动力学性能的影响,研究了不同失气过程时长、运行速度与曲线通过工况下空气弹簧失气车辆的安全性。计算结果表明:空气弹簧失气后车辆临界速度由623km.h-1大幅降低为351km.h-1。空气弹簧突然失气导致轮轨垂向力减小,轮重减载率增大,且失气过程越短,轮重减载率越大,失气过程为0.2s时轮重减载率达到0.651。车辆运行速度低于300km.h-1时,车速对轮重减载率和轮轨力影响不明显,当大于300km.h-1时,减载率随车速增大迅速增大。车辆通过曲线时,在圆曲线上失气最危险,轮重减载率最大为0.652。  相似文献   

12.
针对跨坐式单轨车辆抗倾覆性能影响因素繁多且复杂的特点, 利用降维思想提出一种综合评价车辆抗倾覆性能的方法, 并分析其影响参数敏感性; 基于浮心高度、柔性系数和临界侧滚角的定义, 推导了针对跨坐式单轨车辆的3个指标计算方法, 讨论了3个指标的区别, 综合提出13个可量化的抗倾覆影响因子; 基于测试和仿真数据建立了跨坐式单轨车辆的抗倾覆影响因子模型, 计算得到5个主因子和各参数的影响权重; 提出以抗倾系数来综合评价跨坐式单轨车辆的抗倾覆性能, 并得到其便捷计算方法; 利用多体动力学软件Universal Mechanism建立车辆-轨道参数化动力学模型, 验证了所得到的参数权重与评价指标的准确性。分析结果表明: 跨坐式单轨车辆的浮心高度、柔性系数和临界侧滚角均能不同程度地反映车辆抗倾覆性, 但不能体现参数敏感性; 跨坐式单轨车辆的抗倾覆性能受稳定轮与轨道梁表面接触状态的影响明显, 当稳定轮一侧脱离轨面时, 车辆的抗倾覆性能下降约50%;影响车辆抗倾覆性能的5个主因子分别是稳定轮、二系悬挂、横向跨距、一系悬挂和车体; 适当降低稳定轮垂向位置和车体质心位置, 增大水平轮预压力和走行轮横向跨距可有效提高跨坐式单轨车辆的抗倾覆性能。   相似文献   

13.
利用Creo软件建立了某型动车组头中尾3车编组和不同高度的路堤模型,通过Fluent软件模拟列车在车速分别为300和350 km·h-1,横风风速分别为17.10、20.70、24.40和28.40 m·s-1的环境下运行,将获取的高速列车气动力载荷施加到Simpack建立的动力学模型中,计算其动力学性能参数;深入分析了横风工况下高速列车在不同高度复线路堤背风侧运行时车体的压力分布、气流场结构、气动力与风致安全性,并重点探究了头车在不同运行速度和横风风速下的运行安全性。分析结果表明:在相同车速和横风环境下,随着路堤高度的增加,列车受到的侧向力整体呈增大趋势,尾车在横风作用下受到反向侧向力,头车所受侧向力最大,且升力持续增大,中间车所受升力相对较大,尾车所受阻力最大;横风环境下列车压力峰值点位于头车鼻尖处且向迎风侧偏移,各路堤高度工况下气流场结构基本相同,头车背风侧和底部转向架处有明显的涡流,但尾车处的涡流却在迎风侧,这可能是导致尾车反向侧向力的主因;脱轨系数、轮轴横向力、轮轨垂向力和轮重减载率均随路堤高度和横风风速的增大而增大,轮轨垂向力始终在安全限值内,当横风风速分别为24.40和28.40 m·s-1时,列车运行速度应分别低于350和300 km·h-1,以保证列车行车安全。   相似文献   

14.
为了研究车辆冲击对车辆运行安全性的影响,依据缓冲器计算理论,利用Simulink软件建立了货车缓冲器动力学修正模型;根据车辆系统动力学理论及车钩计算模型,利用UM软件建立了装用K6转向架的C80货车完整自由度车辆模型.将上述模型联合仿真,实现了车辆冲击的数值模拟.计算结果表明:两组车之间的冲击比一辆车与一组车间的冲击危害更大;车钩和从板质量使车辆产生高频小幅的车钩力;悬挂因素导致完整自由度车辆冲击模型的车钩力比单自由度车辆冲击模型小21.7%;车辆在纵向、横向和垂向存在耦合关系,轮轨垂向力随着冲击质量以及重心高度的增加而增大,轮轨横向力随着车端纵向压力的增加和曲线半径的减小而增大.   相似文献   

15.
为研究车辆对大位移伸缩缝振动特性的影响,考虑轮胎载重车辆过大位移桥梁伸缩缝时的真实激励特性,提出了一种载重车辆-伸缩缝耦合系统垂向动力学模型,同时引入新型快速积分法对数值模型进行求解.以ZL1600模数式大位移伸缩缝为研究对象,通过仿真结果与试验测试结果的对比验证模型有效性,并基于此模型分析了轮胎载重车辆对大位移伸缩缝的冲击效应.研究结果表明:中梁测点垂向速度的动力学模型仿真结果能较好地匹配试验测试结果,仿真得到中梁测点最大下沉位移的偏差均小于10.0%,表明该模型具有较高的计算精度;车辆轮胎力的最大冲击系数出现在车轮驶上伸缩缝后方桥面时,需要考虑对此处结构进行加强;车辆轮胎对伸缩缝中梁和后方桥面的冲击系数均随车速的增大而增大,最大冲击系数分别为0.67和0.82,均超过了国内现行规范的推荐值0.45,应得到重视.  相似文献   

16.
为改善高速列车横风下运行的动力学性能, 提高运行平稳性和安全性, 以轮轴横向力和轮重减载率为优化目标, 对高速列车动力学模型的悬挂参数进行多目标优化设计; 建立高速列车多体动力学参数化模型, 依照大风限速标准, 加载列车在横风下以不同速度运行的气动力数据, 选取了止挡间隙、一系悬挂纵向和垂向刚度、二系悬挂纵向和垂向刚度、一系垂向减振器刚度、二系横向和垂向减振器刚度、抗蛇形减振器刚度及阻尼11个变量; 搭建高速列车动力学模型优化平台, 对高速列车多体动力学参数化模型的设计参数与轮轴横向力和轮重减载率的相关性进行分析, 得到列车各悬挂参数对轮轴横向力和轮重减载率的影响趋势; 基于相关性结果, 采用NCGA、AMGA和NSGA-Ⅱ遗传算法对高速列车的动力学参数进行优化设计。分析结果表明: 采用NSGA-Ⅱ算法的优化结果最为理想; 与轮轴横向力和轮重减载率相关性最大的参数为抗蛇形减振器刚度, 为反效应; 优化后列车的动力学性能得到明显的改善, 轮重减载率从原始的0.78整体优化到0.63以下, 且最小可以优化到0.49, 最高可降低37.2%;轮轴横向力从原始的16.8 kN整体优化到9.6 kN以下, 且最小可以优化到5.79 kN, 最高可降低65.5%;得到了优化目标的Pareto前沿最优解, 确定了列车各动力学参数设计变量的最优解集, 并对最优解集在其他列车速度和风速组合下的运行工况进行验证, 适用性较好。   相似文献   

17.
钢轨扣件失效对列车动态脱轨的影响   总被引:5,自引:3,他引:2  
建立了非对称车辆/轨道耦合动力学模型,分析轨道扣件失效对车辆动态脱轨的影响,考虑离散轨枕支承对车辆/轨道耦合作用的影响,通过假设轨道系统刚度沿纵向分布发生突变来模拟扣件组失效状态,推导了考虑钢轨横向和垂向以及扭转运动的轮轨滚动接触蠕滑率计算公式,利用Hertz法向接触理论和沈氏蠕滑理论计算轮轨法向力及轮轨滚动接触蠕滑力,采用新型显式积分法求解车辆/轨道耦合动力学系统运动方程,通过数值分析计算,得到轮轨横垂向力之比、轮重减载率、脱轨危险状态的持续时间和轮对踏面上轮轨接触点位置的变化。连续5个钢轨扣件不同程度失效对列车动态脱轨的影响的数值模拟结果表明,如果失效因子从0.8增大到1.0,即钢轨扣件经历从接近完全松脱到完全松脱,钢轨扣件失效对列车动态脱轨影响呈指数规律。  相似文献   

18.
考虑车辆一系、二系悬挂参数和轨道参数的随机性,在多体动力学软件UM当中建立了CRH2动车组拖车的随机性仿真模型;采用最优拉丁超立方试验设计方法抽取车辆参数和轨道参数的随机样本,利用多目标优化软件iSight调用随机样本,联合UM完成了随机样本仿真分析;在有限试验设计样本和仿真数据的限制下,以最佳近似精度为 目标,结合最...  相似文献   

19.
为了优化跨座式单轨列车走行轮轮胎不均匀磨损性能,在运行工况分析基础上建立了走行轮轮胎有限元模型;结合走行轮磨损特性评价指标,建立了一套新的走行轮磨损间接评价方法,该方法以侧偏角和侧倾角为设计变量,通过探索走行轮轮胎侧偏角、侧倾角及其组合对走行轮轮胎磨损与不均匀磨损的影响对车辆二系悬挂参数进行优化,减轻走行轮轮胎磨损. 研究结果表明:优选前,转向架(以前转向架为例)中前、后排走行轮轮胎侧偏角分别为0.5°、0.3°、?0.4°、?0.2°;优选后,转向架中前、后走行轮轮胎侧偏角为0.2°、0.2°、?0.2°、?0.2°;车辆结构参数中二系悬挂横向刚度、垂向刚度对走行轮各轮胎不均匀磨损的影响较大,且选取合适的参数值在一定程度上能够减轻走行轮各轮胎不均匀磨损.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号