首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Harnessing the potential of new generation transport data and increasing public participation are high on the agenda for transport stakeholders and the broader community. The initial phase in the program of research reported here proposed a framework for mining transport-related information from social media, demonstrated and evaluated it using transport-related tweets associated with three football matches as case studies. The goal of this paper is to extend and complement the previous published studies. It reports an extended analysis of the research results, highlighting and elaborating the challenges that need to be addressed before a large-scale application of the framework can take place. The focus is specifically on the automatic harvesting of relevant, valuable information from Twitter. The results from automatically mining transport related messages in two scenarios are presented i.e. with a small-scale labelled dataset and with a large-scale dataset of 3.7 m tweets. Tweets authored by individuals that mention a need for transport, express an opinion about transport services or report an event, with respect to different transport modes, were mined. The challenges faced in automatically analysing Twitter messages, written in Twitter’s specific language, are illustrated. The results presented show a strong degree of success in the identification of transport related tweets, with similar success in identifying tweets that expressed an opinion about transport services. The identification of tweets that expressed a need for transport services or reported an event was more challenging, a finding mirrored during the human based message annotation process. Overall, the results demonstrate the potential of automatic extraction of valuable information from tweets while pointing to areas where challenges were encountered and additional research is needed. The impact of a successful solution to these challenges (thereby creating efficient harvesting systems) would be to enable travellers to participate more effectively in the improvement of transport services.  相似文献   

2.
Within the transportation research literature, the attempt to understand and predict the level of car ownership is probably one of the most popular areas of study. The primary reason for this is understandable, having access to a vehicle increases an individual’s (or their household’s) travel options, leading to greater mobility. Secondary reasons for this scrutiny include the need to predict future transport investment in road infrastructure and the commercial demand for new vehicles. This paper attempts to predict the level of household car ownership as a function of the characteristics of the household and the individuals that make up the household. The primary data source for this study comes from the 2001 United Kingdom Census and the analysis methods used are from the discipline of data mining. The results of this study are in line with those from previous research but show a potential to predict the higher levels of household car ownership with greater accuracy than other similar studies.  相似文献   

3.
    
Social media platforms are seeing increasing adoption by public transport agencies, as they provide a cost-effective, reliable, and timely mechanism for sharing information with passengers and other travellers. In this paper, we use a case study of the @GamesTravel2014 Twitter account to evaluate how this social media platform was used over the course of the 2014 Commonwealth Games in Glasgow, Scotland to provide and share transport-related information and respond to information requests. The case study provides an exemplar for the public co-ordination of information from multiple partners in a complex environment during a time of transport disruption. We evaluate both the structure and intent of the @GamesTravel2014 social media strategy via interviews with involved parties and an analysis of Tweets related to the account. Findings indicate the potential for future applications of social media by transport operators and authorities in producing a more effective network of communication with passengers.  相似文献   

4.
文章根据连续刚构桥的构造和受力特点,介绍了某连续刚构桥健康监测系统的数据采集方式和定时采集制度,同时对应力、挠度和加速度数据的后期处理方法进行了探讨,为其他同类桥梁的健康监测提供依据。  相似文献   

5.
6.
The lack of personalized solutions for managing the demand of joint leisure trips in cities in real time hinders the optimization of transportation system operations. Joint leisure activities can account for up to 60% of trips in cities and unlike fixed trips (i.e., trips to work where the arrival time and the trip destination are predefined), leisure activities offer more optimization flexibility since the activity destination and the arrival times of individuals can vary.To address this problem, a perceived utility model derived from non-traditional data such as smartphones/social media for representing users’ willingness to travel a certain distance for participating in leisure activities at different times of day is presented. Then, a stochastic annealing search method for addressing the exponential complexity optimization problem is introduced. The stochastic annealing method suggests the preferred location of a joint leisure activity and the arrival times of individuals based on the users’ preferences derived from the perceived utility model. Test-case implementations of the approach used 14-month social media data from London and showcased an increase of up to 3 times at individuals’ satisfaction while the computational complexity is reduced to almost linear time serving the real-time implementation requirements.  相似文献   

7.
    
Vehicular Ad-Hoc Networks (VANETs) are an emerging technology soon to be brought to everyday life. Many Intelligent Transport Systems (ITS) services that are nowadays performed with expensive infrastructure, like reliable traffic monitoring and car accident detection, can be enhanced and even entirely provided through this technology. In this paper, we propose and assess how to use VANETs for collecting vehicular traffic measurements. We provide two VANET sampling protocols, named SAME and TOME, and we design and implement an application for one of them, to perform real time incident detection. The proposed framework is validated through simulations of both vehicular micro-mobility and communications on the 68 km highway that surrounds Rome, Italy. Vehicular traffic is generated based on a large real GPS traces set measured on the same highway, involving about ten thousand vehicles over many days. We show that the sampling monitoring protocol, SAME, collects data in few seconds with relative errors less than 10%, whereas the exhaustive protocol TOME allows almost fully accurate estimates within few tens of seconds. We also investigate the effect of a limited deployment of the VANET technology on board of vehicles. Both traffic monitoring and incident detection are shown to still be feasible with just 50% of equipped vehicles.  相似文献   

8.
    
Understanding how destination choice and business clusters are connected is of great importance for designing sustainable cities, fostering flourishing business clusters, and building livable communities. As sharing locations and activities on social media platforms becomes increasingly popular, such data can reveal destination choice and activity space which can shed light on human-environment relationships. To this end, this research models the relationship between characteristics of business clusters and check-in activities from Los Angeles County, California. Business clusters are analyzed via two lenses: the supply side (employment data by industry) and the demand side (on-line check-in data). Spatial and statistical analyses are performed to understand how land use and transportation network features affect the popularity of the identified clusters and their relationships. Our results suggest that a cluster with more employment opportunities and more types of employment is associated with more check-ins. A business cluster that has access to parks or recreational services is also more popular. A business cluster with a longer road network and better connectivity of roads is associated with more check-ins. The visualization of the common visitors between clusters reveals that there are a few clusters with outstanding strong ties, while most have modest ties with each other. Our findings have implications on the influence of urban design on the popularity of business clusters.  相似文献   

9.
    
This study explores the possibility of employing social media data to infer the longitudinal travel behavior. The geo-tagged social media data show some unique features including location-aggregated features, distance-separated features, and Gaussian distributed features. Compared to conventional household travel survey, social media data is less expensive, easier to obtain and the most importantly can monitor the individual’s longitudinal travel behavior features over a much longer observation period. This paper proposes a sequential model-based clustering method to group the high-resolution Twitter locations and extract the Twitter displacements. Further, this study details the unique features of displacements extracted from Twitter including the demographics of Twitter user, as well as the advantages and limitations. The results are even compared with those from traditional household travel survey, showing promises in using displacement distribution, length, duration and start time to infer individual’s travel behavior. On this basis, one can also see the potential of employing social media to infer longitudinal travel behavior, as well as a large quantity of short-distance Twitter displacements. The results will supplement the traditional travel survey and support travel behavior modeling in a metropolitan area.  相似文献   

10.
    
This paper illustrates a ride matching method for commuting trips based on clustering trajectories, and a modeling and simulation framework with ride-sharing behaviors to illustrate its potential impact. It proposes data mining solutions to reduce traffic demand and encourage more environment-friendly behaviors. The main contribution is a new data-driven ride-matching method, which tracks personal preferences of road choices and travel patterns to identify potential ride-sharing routes for carpool commuters. Compared with prevalent carpooling algorithms, which allow users to enter departure and destination information for on-demand trips, the proposed method focuses more on regular commuting trips. The potential effectiveness of the approach is evaluated using a traffic simulation-assignment framework with ride-sharing participation using the routes suggested by our algorithm. Two types of ride-sharing participation scenarios, with and without carpooling information, are considered. A case study with the Chicago tested is conducted to demonstrate the proposed framework’s ability to support better decision-making for carpool commuters. The results indicate that with ride-matching recommendations using shared vehicle trajectory data, carpool programs for commuters contribute to a less congested traffic state and environment-friendly travel patterns.  相似文献   

11.
文章以上海大众交通(集团)有限公司提供的出租车GPS数据为基础,通过对源数据进行过滤和处理,满足了交通公共信息平台数据应用要求,实现了交通管理和建设所需要数据的提取,提高了交通资源的利用率。  相似文献   

12.
    
For tools that generate more efficient flight routes or reroute advisories, it is important to ensure compatibility of automation and autonomy decisions with human objectives so as to ensure acceptability by the human operators. In this paper, the authors developed a proof of concept predictor of operational acceptability for route changes during a flight. Such a capability could have applications in automation tools that identify more efficient routes around airspace impacted by weather or congestion and that better meet airline preferences. The predictor is based on applying data mining techniques, including logistic regression, a decision tree, a support vector machine, a random forest and Adaptive Boost, to historical flight plan amendment data reported during operations and field experiments. Cross validation was used for model development, while nested cross validation was used to validate the models. The model found to have the best performance in predicting air traffic controller acceptance or rejection of a route change, using the available data from Fort Worth Air Traffic Control Center and its adjacent Centers, was the random forest, with an F-score of 0.77. This result indicates that the operational acceptance of reroute requests does indeed have some level of predictability, and that, with suitable data, models can be trained to predict the operational acceptability of reroute requests. Such models may ultimately be used to inform route selection by decision support tools, contributing to the development of increasingly autonomous systems that are capable of routing aircraft with less human input than is currently the case.  相似文献   

13.
    
This paper presents a traffic control system that can work standalone to handle various boundary conditions of the recurrent, non-recurrent congestion, transit signal priority and downstream blockage conditions to improve the overall traffic network vehicular productivity and efficiency. The control system uses field detectors’ data to determine the boundary conditions of all incoming and exit links. The developed system is interfaced with CORSIM micro-simulation for rigorous evaluations with different types of signal phase settings. The comparative performance of this control logic is quite satisfactory for some of the most frequently used phase settings in the network with a high number of junctions under highly congested conditions.  相似文献   

14.
    
In the past few years, the social science literature has shown significance attention to extracting information from social media to track and analyse human movements. In this paper the transportation aspect of social media is investigated and reviewed. A detailed discussion is provided about how social media data from different sources can be used to indirectly and with minimal cost extract travel attributes such as trip purpose, mode of transport, activity duration and destination choice, as well as land use variables such as home, job and school location and socio-demographic attributes including gender, age and income. The evolution of the field of transport and travel behaviour around applications of social media over the last few years is studied. Further, this paper presents results of a qualitative survey from travel demand modelling experts around the world on applicability of social media data for modelling daily travel behaviour. The result of the survey reveals positive view of the experts about usefulness of such data sources.  相似文献   

15.
This paper shows how to recover the arrival times of trains from the gate times of metro passengers from Smart Card data. Such technique is essential when a log, the set of records indicating the actual arrival and departure time of each bus or train at each station and also a critical component in reliability analysis of a transportation system, is missing partially or entirely. The procedure reconstructs each train as a sequence of the earliest exit times, called S-epochs, among its alighting passengers at each stations. The procedure first constructs a set of passengers, also known as reference passengers, whose routing choices are easily identifiable. The procedure then computes, from the exit times of the reference passengers, a set of tentative S-epochs based on a detection measure whose validity relies on an extreme-value characteristic of the platform-to-gate movement of alighting passengers. The tentative S-epochs are then finalized to be a true one, or rejected, based on their consistencies with bounds and/or interpolation from prescribed S-epochs of adjacent trains and stations. Tested on 12 daily sets of trains, with varying degrees of missing logs, from three entire metro lines, the method restored the arrival times of 95% of trains within the error of 24 s even when 100% of logs was missing. The mining procedure can also be applied to trains operating under special strategies such as short-turning and skip-stop. The recovered log seems precise enough for the current reliability analysis performed by the city of Seoul.  相似文献   

16.
    
Trip purpose is crucial to travel behavior modeling and travel demand estimation for transportation planning and investment decisions. However, the spatial-temporal complexity of human activities makes the prediction of trip purpose a challenging problem. This research, an extension of work by Ermagun et al. (2017) and Meng et al. (2017), addresses the problem of predicting both current and next trip purposes with both Google Places and social media data. First, this paper implements a new approach to match points of interest (POIs) from the Google Places API with historical Twitter data. Therefore, the popularity of each POI can be obtained. Additionally, a Bayesian neural network (BNN) is employed to model the trip dependence on each individual’s daily trip chain and infer the trip purpose. Compared with traditional models, it is found that Google Places and Twitter information can greatly improve the overall accuracy of prediction for certain activities, including “EatOut”, “Personal”, “Recreation” and “Shopping”, but not for “Education” and “Transportation”. In addition, trip duration is found to be an important factor in inferring activity/trip purposes. Further, to address the computational challenge in the BNN, an elastic net is implemented for feature selection before the classification task. Our research can lead to three types of possible applications: activity-based travel demand modeling, survey labeling assistance, and online recommendations.  相似文献   

17.
    
Driver cognitive distraction (e.g., hand-free cell phone conversation) can lead to unapparent, but detrimental, impairment to driving safety. Detecting cognitive distraction represents an important function for driver distraction mitigation systems. We developed a layered algorithm that integrated two data mining methods—Dynamic Bayesian Network (DBN) and supervised clustering—to detect cognitive distraction using eye movement and driving performance measures. In this study, the algorithm was trained and tested with the data collected in a simulator-based study, where drivers drove either with or without an auditory secondary task. We calculated 19 distraction indicators and defined cognitive distraction using the experimental condition (i.e., “distraction” as in the drives with the secondary task, and “no distraction” as in the drives without the secondary task). We compared the layered algorithm with previously developed DBN and Support Vector Machine (SVM) algorithms. The results showed that the layered algorithm achieved comparable prediction performance as the two alternatives. Nonetheless, the layered algorithm shortened training and prediction time compared to the original DBN because supervised clustering improved computational efficiency by reducing the number of inputs for DBNs. Moreover, the supervised clustering of the layered algorithm revealed rich information on the relationship between driver cognitive state and performance. This study demonstrates that the layered algorithm can capitalize on the best attributes of component data mining methods and can identify human cognitive state efficiently. The study also shows the value in considering the supervised clustering method as an approach to feature reduction in data mining applications.  相似文献   

18.
    
Time-stamped data for transportation and logistics are essential for estimating times on transportation legs and times between successive stages in logistic processes. Often these data are subject to recording errors and omissions. Matches must then be inferred from the time stamps alone because identifying keys are unavailable, suppressed to preserve confidentiality, or ambiguous because of missing observations. We present an integer programming (IP) model developed for matching successive events in such situations and illustrate its application in three problem settings involving (a) airline operations at an airport, (b) taxi service between an airport and a train station, and (c) taxi services from an airport. With data from the third setting (where a matching key was available), we illustrate the robustness of estimates for median and mean times between events under different random rates for “failure to record”, different screening criteria for outliers, and different target times used in the IP objective. The IP model proves to be a tractable and informative tool for data matching and data cleaning, with a wide range of potential applications.  相似文献   

19.
    
Urban systems are interdependent as individuals’ daily activities engage using those urban systems at certain time of day and locations. There may exist clear spatial and temporal correlations among usage patterns across all urban systems. This paper explores such a correlation among energy usage and roadway congestion. We propose a general framework to predict congestion starting time and congestion duration in the morning using the time-of-day electricity use data from anonymous households with no personally identifiable information. We show that using time-of-day electricity data from midnight to early morning from 322 households in the City of Austin, can make reliable prediction of congestion starting time of several highway segments, at the time as early as 2 am. This predictor significantly outperforms a time-series predictor that uses only real-time travel time data up to 6 am. We found that 8 out of the 10 typical electricity use patterns have statistically significant affects on morning congestion on highways in Austin. Some patterns have negative effects, represented by an early spike of electricity use followed by a drastic drop that could imply early departure from home. Others have positive effects, represented by a late night spike of electricity use possible implying late night activities that can lead to late morning departure from home.  相似文献   

20.
In this paper, a new methodology is presented for real-time detection and characterization of incidents on surface streets. The proposed automatic incident detection approach is capable of detecting incidents promptly as well as characterizing incidents in terms of time-varying lane-changing fractions and queue lengths in blocked lanes, lanes blocked due to incidents, and incident duration. The architecture of the proposed incident detection approach consists of three sequential procedures: (1) Symptom Identification for identification of incident symptoms, (2) Signal Processing for real-time prediction of incident-related lane traffic characteristics and (3) Pattern Recognition for incident recognition. Lane traffic counts and occupancy are the only two major types of input data, which can be readily collected from point detectors. The primary techniques utilized in this paper include: (1) a discrete-time, nonlinear, stochastic system with boundary constraints to predict real-time lane-changing fractions and queue lengths and (2) a pattern-recognition-based algorithm employing modified sequential probability ratio tests (MSPRT) to detect incidents. Off-line tests based on simulated as well as video-based real data were conducted to assess the performance of the proposed algorithm. The test results have indicated the feasibility of achieving real-time incident detection using the proposed methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号