首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The quest for more fuel-efficient vehicles is being driven by the increasing price of oil. Hybrid electric powertrains have established a presence in the marketplace primarily based on the promise of fuel savings through the use of an electric motor in place of the internal combustion engine during different stages of driving. However, these fuel savings associated with hybrid vehicle operation come at the tradeoff of a significantly increased initial vehicle cost due to the increased complexity of the powertrain. On the other hand, telematics-enabled vehicles may use a relatively cheap sensor network to develop information about the traffic environment in which they are operating, and subsequently adjust their drive cycle to improve fuel economy based on this information – thereby representing ‘intelligent’ use of existing powertrain technology to reduce fuel consumption. In this paper, hybrid and intelligent technologies using different amounts of traffic flow information are compared in terms of fuel economy over common urban drive cycles. In order to develop a fair comparison between the technologies, an optimal (for urban driving) hybrid vehicle that matches the performance characteristics of the baseline intelligent vehicle is used. The fuel economy of the optimal hybrid is found to have an average of 20% improvement relative to the baseline vehicle across three different urban drive cycles. Feedforward information about traffic flow supplied by telematics capability is then used to develop alternative driving cycles firstly under the assumption there are no constraints on the intelligent vehicle’s path, and then taking into account in the presence of ‘un-intelligent’ vehicles on the road. It is observed that with telematic capability, the fuel economy improvements equal that achievable with a hybrid configuration with as little as 7 s traffic look-ahead capability, and can be as great as 33% improvement relative to the un-intelligent baseline drivetrain. As a final investigation, the two technologies are combined and the potential for using feedforward information from a sensor network with a hybrid drivetrain is discussed.  相似文献   

2.
Autonomous mobility is one of the rapidly evolving aspects of smart transportation which carries the potential of reshaping both demand and supply sides of transportation systems. While understanding public opinions about autonomous vehicles (AVs) is a compelling step towards their successful implementation, still little is known about to which extent people will embrace this new technology and how the vehicle features will affect their adoption decision. This study presents a new approach for modeling the adoption behavior of fully AVs using the profile-case best-worst scaling model. In this approach, an AV profile which is characterized in terms of the main vehicle attributes and their associated levels is presented to the decision maker and he/she is asked to select the most and the least attractive attributes. Further, a binary adoption question at the end of the choice task inquires if the respondent is willing to purchase the described AV. Utilizing this method, we can recognize the difference between the intrinsic impacts of the vehicle attributes and the impact of the attribute levels on the adoption decision. Results of the analysis indicate that people are much more sensitive to the purchase price and incentive policies such as taking liability away from the “driver” in case of accidents and provision of exclusive lanes for AVs compared to other factors such as fuel efficiency, safety, or environmental friendliness. Further, it is found that millennials with higher income, those who live in the downtown area, and the majority of people who have experienced an accident in the past have greater interests in adopting this technology.  相似文献   

3.
This study quantifies the energy and environmental impact of a selection of traffic calming measures using a combination of second-by-second floating-car global positioning system data and microscopic energy and emission models. It finds that traffic calming may result in negative impacts on vehicle fuel consumption and emission rates if drivers exert aggressive acceleration levels to speed up to their journeys. Consequently by eliminating sharp acceleration maneuvers significant savings in vehicle fuel consumption and emission rates are achievable through driver education. The study also demonstrates that high emitting vehicles produce CO emissions that are up to 25 times higher than normal vehicle emission levels while low emitting vehicles produce emissions that are 15–35% of normal vehicles. The relative increases in vehicle fuel consumption and emission levels associated with the sample traffic calming measures are consistent and similar for normal, low, and high emitting vehicles.  相似文献   

4.
Wider deployment of alternative fuel vehicles (AFVs) can help with increasing energy security and transitioning to clean vehicles. Ideally, adopters of AFVs are able to maintain the same level of mobility as users of conventional vehicles while reducing energy use and emissions. Greater knowledge of AFV benefits can support consumers’ vehicle purchase and use choices. The Environmental Protection Agency’s fuel economy ratings are a key source of potential benefits of using AFVs. However, the ratings are based on pre-designed and fixed driving cycles applied in laboratory conditions, neglecting the attributes of drivers and vehicle types. While the EPA ratings using pre-designed and fixed driving cycles may be unbiased they are not necessarily precise, owning to large variations in real-life driving. Thus, to better predict fuel economy for individual consumers targeting specific types of vehicles, it is important to find driving cycles that can better represent consumers’ real-world driving practices instead of using pre-designed standard driving cycles. This paper presents a methodology for customizing driving cycles to provide convincing fuel economy predictions that are based on drivers’ characteristics and contemporary real-world driving, along with validation efforts. The methodology takes into account current micro-driving practices in terms of maintaining speed, acceleration, braking, idling, etc., on trips. Specifically, using a large-scale driving data collected by in-vehicle Global Positioning System as part of a travel survey, a micro-trips (building block) library for California drivers is created using 54 million seconds of vehicle trajectories on more than 60,000 trips, made by 3000 drivers. To generate customized driving cycles, a new tool, known as Case Based System for Driving Cycle Design, is developed. These customized cycles can predict fuel economy more precisely for conventional vehicles vis-à-vis AFVs. This is based on a consumer’s similarity in terms of their own and geographical characteristics, with a sample of micro-trips from the case library. The AFV driving cycles, created from real-world driving data, show significant differences from conventional driving cycles currently in use. This further highlights the need to enhance current fuel economy estimations by using customized driving cycles, helping consumers make more informed vehicle purchase and use decisions.  相似文献   

5.
This paper analyses transport energy consumption of conventional and electric vehicles in mountainous roads. A standard round trip in Andorra has been modelled in order to characterise vehicle dynamics in hilly regions. Two conventional diesel vehicles and their electric-equivalent models have been simulated and their performances have been compared. Six scenarios have been simulated to study the effects of factors such as orography, traffic congestion and driving style. The European fuel consumption and emissions test and Artemis urban driving cycles, representative of European driving cycles, have also been included in the comparative analysis. The results show that road grade has a major impact on fuel economy, although it affects consumption in different levels depending on the technology analysed. Electric vehicles are less affected by this factor as opposed to conventional vehicles, increasing the potential energy savings in a hypothetical electrification of the car fleet. However, electric vehicle range in mountainous terrains is lower compared to that estimated by manufacturers, a fact that could adversely affect a massive adoption of electric cars in the short term.  相似文献   

6.
Perception system design is a vital step in the development of an autonomous vehicle (AV). With the vast selection of available off-the-shelf schemes and seemingly endless options of sensor systems implemented in research and commercial vehicles, it can be difficult to identify the optimal system for one’s AV application. This article presents a comprehensive review of the state-of-the-art AV perception technology available today. It provides up-to-date information about the advantages, disadvantages, limits, and ideal applications of specific AV sensors; the most prevalent sensors in current research and commercial AVs; autonomous features currently on the market; and localization and mapping methods currently implemented in AV research. This information is useful for newcomers to the AV field to gain a greater understanding of the current AV solution landscape and to guide experienced researchers towards research areas requiring further development. Furthermore, this paper highlights future research areas and draws conclusions about the most effective methods for AV perception and its effect on localization and mapping. Topics discussed in the Perception and Automotive Sensors section focus on the sensors themselves, whereas topics discussed in the Localization and Mapping section focus on how the vehicle perceives where it is on the road, providing context for the use of the automotive sensors. By improving on current state-of-the-art perception systems, AVs will become more robust, reliable, safe, and accessible, ultimately providing greater efficiency, mobility, and safety benefits to the public.  相似文献   

7.
Autonomous vehicles (AVs) represent a potentially disruptive yet beneficial change to our transportation system. This new technology has the potential to impact vehicle safety, congestion, and travel behavior. All told, major social AV impacts in the form of crash savings, travel time reduction, fuel efficiency and parking benefits are estimated to approach $2000 to per year per AV, and may eventually approach nearly $4000 when comprehensive crash costs are accounted for. Yet barriers to implementation and mass-market penetration remain. Initial costs will likely be unaffordable. Licensing and testing standards in the U.S. are being developed at the state level, rather than nationally, which may lead to inconsistencies across states. Liability details remain undefined, security concerns linger, and without new privacy standards, a default lack of privacy for personal travel may become the norm. The impacts and interactions with other components of the transportation system, as well as implementation details, remain uncertain. To address these concerns, the federal government should expand research in these areas and create a nationally recognized licensing framework for AVs, determining appropriate standards for liability, security, and data privacy.  相似文献   

8.
This study gains insight into individual motivations for choosing to own and use autonomous vehicles and develops a model for autonomous vehicle long-term choice decisions. A stated preference questionnaire is distributed to 721 individuals living across Israel and North America. Based on the characteristics of their current commutes, individuals are presented with various scenarios and asked to choose the car they would use for their commute. A vehicle choice model which includes three options is estimated:
  • (1)Continue to commute using a regular car that you have in your possession.
  • (2)Buy and shift to commuting using a privately-owned autonomous vehicle (PAV).
  • (3)Shift to using a shared-autonomous vehicle (SAV), from a fleet of on-demand cars for your commute.
A factor analysis determined five relevant latent variables describing the individuals’ attitudes: technology interest, environmental concern, enjoy driving, public transit attitude, and pro-AV sentiments. The effects that the characteristics of the individual and the autonomous vehicle have on use and acceptance are quantified through random utility models including logit kernel model taking into account panel effects.Currently, large overall hesitations towards autonomous vehicle adoption exist, with 44% of choice decisions remaining regular vehicles. Early AV adopters will likely be young, students, more educated, and spend more time in vehicles. Even if the SAV service were to be completely free, only 75% of individuals would currently be willing to use SAVs. The study also found various differences regarding the preferences of individuals in Israel and North America, namely that Israelis are overall more likely to shift to autonomous vehicles.Methods to encourage SAV use include increasing the costs for regular cars as well as educating the public about the benefits of shared autonomous vehicles.  相似文献   

9.
With 36 ventures testing autonomous vehicles (AVs) in the State of California, commercial deployment of this disruptive technology is almost around the corner (California Department of Transportation, 2016). Different business models of AVs, including Shared AVs (SAVs) and Private AVs (PAVs), will lead to significantly different changes in regional vehicle inventory and Vehicle Miles Travelled (VMT). Most prior studies have already explored the impact of SAVs on vehicle ownership and VMT generation. Limited understanding has been gained regarding vehicle ownership reduction and unoccupied VMT generation potentials in the era of PAVs. Motivated by such research gap, this study develops models to examine how much vehicle ownership reduction can be achieved once private conventional vehicles are replaced by AVs and the spatial distribution of unoccupied VMT accompanied with the vehicle reduction. The models are implemented using travel survey and synthesized trip profile from Atlanta Metropolitan Area. The results show that more than 18% of the households can reduce vehicles, while maintaining the current travel patterns. This can be translated into a 9.5% reduction in private vehicles in the study region. Meanwhile, 29.8 unoccupied VMT will be induced per day per reduced vehicles. A majority of the unoccupied VMT will be loaded on interstate highways and expressways and the largest percentage inflation in VMT will occur on minor local roads. The results can provide implications for evolving trends in household vehicles uses and the location of dedicated AV lanes in the PAV dominated future.  相似文献   

10.
This paper presents in-service data collected from over 300 alternative fuel vehicles and over 80 fueling stations to help fleets determine what types of applications and alternative fuels may help them reduce their environmental impacts and fuel costs. The data were compiled in 2011 by over 30 organizations in New York State using a wide variety of commercial vehicle types and technologies. Fuel economy, incremental vehicle purchase cost, fueling station purchase cost, greenhouse gas reductions, and fuel cost savings data clarifies the performance of alternative fuel vehicles and fuel stations. Data were collected from a range of vehicle types, including school buses, delivery trucks, utility vans, street sweepers, snow plows, street pavers, bucket trucks, paratransit vans, and sedans. CNG, hybrid, LPG, and electric vehicles were tracked.  相似文献   

11.
One interaction between environmental and safety goals in transport is found within the vehicle fleet where fuel economy and secondary safety performance of individual vehicles impose conflicting requirements on vehicle mass from an individual’s perspective. Fleet characteristics influence the relationship between the environmental and safety outcomes of the fleet; the topic of this paper. Cross-sectional analysis of mass within the British fleet is used to estimate the partial effects of mass on the fuel consumption and secondary safety performance of vehicles. The results confirmed that fuel consumption increases as mass increases and is different for different combinations of fuel and transmission types. Additionally, increasing vehicle mass generally decreases the risk of injury to the driver of a given vehicle in the event of a crash. However, this relationship depends on the characteristics of the vehicle fleet, and in particular, is affected by changes in mass distribution within the fleet. We confirm that there is generally a trade-off in vehicle design between fuel economy and secondary safety performance imposed by mass. Cross-comparison of makes and models by model-specific effects reveal cases where this trade-off exists in other aspects of design. Although it is shown that mass imposes a trade-off in vehicle design between safety and fuel use, this does not necessarily mean that it imposes a trade-off between safety and environmental goals in the vehicle fleet as a whole because the secondary safety performance of a vehicle depends on both its own mass and the mass of the other vehicles with which it collides.  相似文献   

12.
Reduction of greenhouse gas emission and fuel consumption as one of the main goals of automotive industry leading to the development hybrid vehicles. The objective of this paper is to investigate the energy management system and control strategies effect on fuel consumption, air pollution and performance of hybrid vehicles in various driving cycles. In order to simulate the hybrid vehicle, the combined feedback–feedforward architecture of the power-split hybrid electric vehicle based on Toyota Prius configuration is modeled, together with necessary dynamic features of subsystem or components in ADVISOR. Multi input fuzzy logic controller developed for energy management controller to improve the fuel economy of a power-split hybrid electric vehicle with contrast to conventional Toyota Prius Hybrid rule-based controller. Then, effects of battery’s initial state of charge, driving cycles and road grade investigated on hybrid vehicle performance to evaluate fuel consumption and pollution emissions. The simulation results represent the effectiveness and applicability of the proposed control strategy. Also, results indicate that proposed controller is reduced fuel consumption in real and modal driving cycles about 21% and 6% respectively.  相似文献   

13.
Standards for fuel consumption and carbon dioxide emissions are implemented worldwide in most light-duty vehicle markets. Regulatory drive cycles, defined as specific time-speed patterns, are used to measure levels of fuel consumption and emissions. These measurements should realistically reflect real world driving performance, however there is increasing concern about their adequacy due to the discrepancies observed between certified and real world consumption and emissions values. One of the main reasons for the discrepancy is that current testing protocols do not account for non-mechanical vehicle energy needs, such as passengers’ thermal comfort needs and the use of electric auxiliaries on-board. Cabin heating and cooling can especially lead to considerable increase in vehicle energy consumption. This paper presents a simulation-based assessment framework to account for the additional fuel consumption related to the cabin thermal energy and auxiliary needs under the worldwide-harmonized light vehicles test procedure (WLTP). A vehicle cabin model is developed and the thermal comfort energy needs are derived for cooling and heating, depending on ambient external temperature under cold, moderate and warm climates. A modification to the WLTP is proposed by including the generated power profiles for thermal comfort and auxiliary needs. Dynamic programming is used to compute the fuel consumption on the modified WLTP for a rechargeable series hybrid electric vehicle (SHEV) architecture. Results show consumption increases of 20% to 96% compared to the currently adopted WLTP, depending on the considered climate.  相似文献   

14.
Using responses to a knowledge–attitudes–behavior questionnaire administered in the Sacramento, California metropolitan region, the effects of environmental knowledge and environmental attitudes on the numbers and types of vehicles owned per household, annual vehicle miles traveled, and fuel consumption are assessed. The results indicate that households with pro-environmental attitudes own fewer and more fuel-efficient vehicles, drive them less, and consequently consume less fuel than do the households of respondents without pro-environmental attitudes. The households of respondents who know more about the environmental impacts of owning and using vehicles own more fuel-efficient vehicles, but environmental knowledge is not statistically significant in relation to numbers of vehicles owned, miles driven, or fuel consumption.  相似文献   

15.
Environmental assessments are on the critical path for the development of land, infrastructure and transportation systems. These assessments are based on planning methods which, in turn, are subject to continuous enhancement. The substantial impacts of transportation on environment, society and economy strongly urge the incorporation of sustainability into transportation planning. Two major developments that enhance transportation sustainability are new fuels and vehicle power systems. Traditional planning ignores technology including the large differences among conventional, hybrid and alternative fuel vehicles and buses. The introduction of alternative fuel vehicles is likely to change the traditional transportation planning process because different characteristics need to be taken into account. In this study a sustainability framework is developed that enables assessment of transportation vehicle characteristics. Identified indicators are grouped in five sustainability dimensions (Environment, Technology, Energy, Economy and Users). Our methodology joins life cycle impacts and a set of quantified indicators to assess the sustainability performance of seven popular light-duty vehicles and two types of transit buses. Bus Rapid Transit receives the highest sustainability index and the pickup truck the lowest. Hybrid electric vehicles are found to have the highest sustainability index among all other passenger vehicles. A sensitivity analysis shows the proposed sustainability dimensions produce robust sustainability assessment for several weighting scenarios. The results are both technology and policy sensitive, thus useful for both short- and long-term planning.  相似文献   

16.
Cai  Yutong  Wang  Hua  Ong  Ghim Ping  Meng  Qiang  Lee  Der-Horng 《Transportation》2019,46(6):2063-2080

The rapid development of autonomous vehicles (AV) in recent years has drawn the attention of numerous countries in terms of its feasibility for use and deployment as individually-owned vehicles or for large-scale fleet planning and deployment as a mobility-on-demand (MOD) service. Singapore is no exception to this global trend and in her pursuit to be smart and car-lite, numerous efforts are made to have AV trials in place and test out their potential deployment in the city state. As one of the many prerequisites of AV planning, public perception on AV plays a vital role when designing any potential AV deployment scheme. As such, a stated preference survey comprising both online survey and field interviews/surveys, was performed island-wide to understand how commuters in Singapore perceive about different AV-based MOD modes. The logit kernel model is adopted to determine how different preference attributes and key demographic indicators can affect the use of AV-based MOD services over other existing first- and last-mile connection modes. The model results have identified how demographics such as gender, age, housing type, education level and income level can influence the travel mode choice. Also, the impacts brought by individuals’ stated preferences over convenience, privacy and familiarity of ride-hailing apps are also investigated. Such findings can provide useful insight in planning future car-lite towns and implementing AV-based MOD services in these towns.

  相似文献   

17.
This paper presents an analysis of a market-based policy aimed at encouraging manufacturers to develop more fuel efficient vehicles without affecting the car buyer’s choice of vehicle size. A vehicle’s size is measured by its “footprint”, the product of track width and wheelbase. Traditional market-based policies to promote higher fuel economy, such as higher gasoline taxes or gas guzzler taxes, also induce motorists to purchase smaller vehicles. Whether or not such policies affect overall road safety remains controversial, however. Feebates, a continuous schedule of new vehicle taxes and rebates as a function of vehicle fuel consumption, can also be made a function of vehicle size, thus removing the incentive to buy a smaller vehicle. A feebate system based on a vehicle’s footprint creates the same incentive to adopt technology to improve fuel economy as simple feebate systems while removing any incentive for manufacturers or consumers to downsize vehicles.  相似文献   

18.
Traffic waves are phenomena that emerge when the vehicular density exceeds a critical threshold. Considering the presence of increasingly automated vehicles in the traffic stream, a number of research activities have focused on the influence of automated vehicles on the bulk traffic flow. In the present article, we demonstrate experimentally that intelligent control of an autonomous vehicle is able to dampen stop-and-go waves that can arise even in the absence of geometric or lane changing triggers. Precisely, our experiments on a circular track with more than 20 vehicles show that traffic waves emerge consistently, and that they can be dampened by controlling the velocity of a single vehicle in the flow. We compare metrics for velocity, braking events, and fuel economy across experiments. These experimental findings suggest a paradigm shift in traffic management: flow control will be possible via a few mobile actuators (less than 5%) long before a majority of vehicles have autonomous capabilities.  相似文献   

19.
Fuel-speed curves (FSC) are used to account for the aggregate effects of congestion on fuel consumption in transportation scenario analysis. This paper presents plausible FSC for conventional internal combustion engine (ICE) vehicles and for advanced vehicles such as hybrid electric vehicles, fully electric vehicles (EVs), and fuel cell vehicles (FCVs) using a fuel consumption model with transient driving schedules and a set of 145 hypothetical vehicles. The FSC shapes show that advanced power train vehicles are expected to maintain fuel economy (FE) in congestion better than ICE vehicles, and FE can even improve for EV and FCV in freeway congestion. In order to implement these FSC for long-range scenario modeling, a bounded approach is presented which uses a single congestion sensitivity parameter. The results in this paper will assist analysis of the roles that vehicle technology and congestion mitigation can play in reducing fuel consumption and greenhouse gas emissions from motor vehicles.  相似文献   

20.
All developed economies mandate at least third party auto insurance resulting inW a vast global liability industry. The evolution towards semi-autonomous and eventually driverless vehicles will progressively remove the leading cause of vehicle accidents, human error, and significantly lower vehicle accident rates. However, this transition will force a departure from existing actuarial methods requires careful management to ensure risks are correctly assigned. Personal motor insurance lines are anticipated to diminish as liability shifts towards OEMs, tier 1 and 2 suppliers and software developers. Vehicle accident risks will hinge on vehicular characteristics in addition to driver related risks as drivers alternate between autonomous and manual driving modes. This paper proposes a Bayesian Network statistical risk estimation approach that can accommodate changing risk levels and the emergence of new risk structures. We demonstrate the use of this method for a Level 3 semi-autonomous vehicle for two scenarios, one where the driver is in control and one where the vehicle is in control. This approach is especially suited to use telematics data generated from the vehicle inherent technologies. We validate the efficacy of this approach from the perspective of the insurer and discuss how vehicle technology development will require a greater degree of collaboration between the insurance company and the manufacturers in order to develop a greater understanding of the risks semi-autonomous and fully autonomous vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号