共查询到20条相似文献,搜索用时 15 毫秒
1.
As electric vehicles (EVs) have gained an increasing market penetration rate, the traffic on urban roads will tend to be a mix of traditional gasoline vehicles (GVs) and EVs. These two types of vehicles have different energy consumption characteristics, especially the high energy efficiency and energy recuperation system of EVs. When GVs and EVs form a platoon that is recognized as an energy-friendly traffic pattern, it is critical to holistically consider the energy consumption characteristics of all vehicles to maximize the energy efficiency benefit of platooning. To tackle this issue, this paper develops an optimal control model as a foundation to provide eco-driving suggestions to the mixed-traffic platoon. The proposed model leverages the promising connected vehicle technology assuming that the speed advisory system can obtain the information on the characteristics of all platoon vehicles. To enhance the model applicability, the study proposes two eco-driving advisory strategies based on the developed optimal control model. One strategy provides the lead vehicle an acceleration profile, while the other provides a set of targeted cruising speeds. The acceleration-based eco-driving advisory strategy is suitable for platoons with an automated leader, and the speed-based advisory strategy is more friendly for platoons with a human-operated leader. Results of numerical experiments demonstrate the significance when the eco-driving advisory system holistically considers energy consumption characteristics of platoon vehicles. 相似文献
2.
Vehicle speed trajectory significantly impacts fuel consumption and greenhouse gas emissions, especially for trips on signalized arterials. Although a large amount of research has been conducted aiming at providing optimal speed advisory to drivers, impacts from queues at intersections are not considered. Ignoring the constraints induced by queues could result in suboptimal or infeasible solutions. In this study, a multi-stage optimal control formulation is proposed to obtain the optimal vehicle trajectory on signalized arterials, where both vehicle queue and traffic light status are considered. To facilitate the real-time update of the optimal speed trajectory, a constrained optimization model is proposed as an approximation approach, which can be solved much quicker. Numerical examples demonstrate the effectiveness of the proposed optimal control model and the solution efficiency of the proposed approach. 相似文献
3.
Information from connected vehicles, such as the position and speed of individual vehicles, can be used to optimize traffic operations at an intersection. This paper proposes such an algorithm for two one-way-streets assuming that only a certain percentage of cars are equipped with this technology. The algorithm enumerates different sequences of cars discharging from the intersection to minimize the objective function. Benefits of platooning (multiple cars consecutively discharging from a queue) and signal flexibility (adaptability to demand) are also considered. The goal is to gain insights about the value (in terms of delay savings) of using connected vehicle technology for intersection control.Simulations are conducted for different total demand values and demand ratios to understand the effects of changing the minimum green time at the signal and the penetration rate of connected cars. Using autonomous vehicle control systems, the signal could rapidly change the direction of priority without relying on the reaction of drivers. However, without this technology a minimum green time is necessary. The results of the simulations show that a minimum green time increases the delay only for the low and balanced demand scenarios. Therefore, the value of using cars with autonomous vehicle control can only be seen at intersections with this kind of demand patterns, and could result in up to 7% decrease in delay. On the other hand, using information from connected vehicles to better adapt the traffic signal has proven to be indeed very valuable. Increases in the penetration rate from 0% up to 60% can significantly reduce the average delay (in low demand scenarios a decrease in delay of up to 60% can be observed). That being said, after a penetration rate of 60%, while the delays continue to decrease, the rate of reduction decreases and the marginal value of information from communication technologies diminishes. Overall, it is observed that connected vehicle technology could significantly improve the operation of traffic at signalized intersections, at least under the proposed algorithm. 相似文献
4.
Conceptually, a Green Light Optimal Speed Advisory (GLOSA) system suggests speeds to vehicles, allowing them to pass through an intersection during the green interval. In previous papers, a single speed is computed for each vehicle in a range between acceptable minimum and maximum values (for example between standstill and the speed limit). This speed is assumed to be constant until the beginning of the green interval, and sent as advice to the vehicle. The goal is to optimise for a particular objective, whether it be minimisation of emissions (for environmental reasons), fuel usage or delay. This paper generalises the advice given to a vehicle, by optimising for delay over the entire trajectory instead of suggesting an individual speed, regardless of initial conditions – time until green, distance to intersection and initial speed. This may require multiple acceleration manoeuvres, so the advice is sent as a suggested acceleration at each time step. Such advice also takes into account a suitable safety constraint, ensuring that vehicles are always able to stop before the intersection during a red interval, thus safeguarding against last-minute signal control schedule changes. While the algorithms developed primarily minimise delay, they also help to reduce fuel usage and emissions by conserving kinetic energy. Since vehicles travel in platoons, the effectiveness of a GLOSA system is heavily reliant on correctly identifying the leading vehicle that is the first to be given trajectory advice for each cycle. Vehicles naturally form a platoon behind this leading vehicle. A time loop technique is proposed which allows accurate identification of the leader even when there are complex interactions between preceding vehicles. The developed algorithms are ideal for connected autonomous vehicle environments, because computer control allows vehicles’ trajectories to be managed with greater accuracy and ease. However, the advice algorithms can also be used in conjunction with manual control provided Vehicle-to-Infrastructure (V2I) communication is available. 相似文献
5.
The continuously variable hydromechanical transmission is an interesting solution for high power vehicles subject to frequent changes of speed, in which the comfort is a significant requirement.Despite their low average efficiency with respect to the mechanical transmissions, the hydromechanical transmissions allow to release the engine speed by the vehicle speed, and to open the possibility for the optimal control of the engine. It follows that the performance and emissions of the powertrain is heavily affected by the logic control.The aim of the paper is to investigate the emission reductions that can be obtained using a Power-Split transmission.Therefore, a hydromechanical transmission has been sized and tested on a 12-ton-city bus by using a one-dimensional model developed in an AMESim environment. Four different control strategies of the powertrain were applied to the model. The CUEDC-ME standard cycle for the characterization of emissions in heavy vehicles was used as a reference mission.The simulation results showed that the hydromechanical transmission reduces consumption or the emission levels with respect to the traditional transmission when managed according to appropriate control strategies. By means of emission values normalized with respect to the standard limits, it is possible to identify a control strategy that allows the reduction of emissions in every usage condition of the vehicle at the expense of a slight increase of consumption.The suggested procedure could help the manufacturer to satisfy the emission standard requirements. 相似文献
6.
Current research on traffic control has focused on the optimization of either traffic signals or vehicle trajectories. With the rapid development of connected and automated vehicle (CAV) technologies, vehicles equipped with dedicated short-range communications (DSRC) can communicate not only with other CAVs but also with infrastructure. Joint control of vehicle trajectories and traffic signals becomes feasible and may achieve greater benefits regarding system efficiency and environmental sustainability. Traffic control framework is expected to be extended from one dimension (either spatial or temporal) to two dimensions (spatiotemporal). This paper investigates a joint control framework for isolated intersections. The control framework is modeled as a two-stage optimization problem with signal optimization at the first stage and vehicle trajectory control at the second stage. The signal optimization is modeled as a dynamic programming (DP) problem with the objective to minimize vehicle delay. Optimal control theory is applied to the vehicle trajectory control problem with the objective to minimize fuel consumption and emissions. A simplified objective function is adopted to get analytical solutions to the optimal control problem so that the two-stage model is solved efficiently. Simulation results show that the proposed joint control framework is able to reduce both vehicle delay and emissions under a variety of demand levels compared to fixed-time and adaptive signal control when vehicle trajectories are not optimized. The reduced vehicle delay and CO2 emissions can be as much as 24.0% and 13.8%, respectively for a simple two-phase intersection. Sensitivity analysis suggests that maximum acceleration and deceleration rates have a significant impact on the performance regarding both vehicle delay and emission reduction. Further extension to a full eight-phase intersection shows a similar pattern of delay and emission reduction by the joint control framework. 相似文献
7.
Improved Air Traffic Management (ATM) leading to reduced en route and gate delay, greater predictability in flight planning, and reduced terminal inefficiencies has a role to play in reducing aviation fuel consumption. Air navigation service providers are working to quantify this role to help prioritize and justify ATM modernization efforts. In the following study we analyze actual flight-level fuel consumption data reported by a major U.S. based airline to study the possible fuel savings from ATM improvements that allow flights to better adhere to their planned trajectories both en route and in the terminal area. To do so we isolate the contribution of airborne delay, departure delay, excess planned flight time, and terminal area inefficiencies on fuel consumption using econometric techniques. The model results indicate that, for two commonly operated aircraft types, the system-wide averages of flight fuel consumption attributed to ATM delay and terminal inefficiencies are 1.0–1.5% and 1.5–4.5%, respectively. We quantify the fuel impact of predicted delay to be 10–20% that of unanticipated delay, reinforcing the role of flight plan predictability in reducing fuel consumption. We rank terminal areas by quantifying a Terminal Inefficiency metric based on the variation in terminal area fuel consumed across flights. Our results help prioritize ATM modernization investments by quantifying the trade-offs in planned and unplanned delays and identifying terminal areas with high potential for improvement. 相似文献
8.
In this paper, we consider connected cruise control design in mixed traffic flow where most vehicles are human-driven. We first propose a sweeping least square method to estimate in real time feedback gains and driver reaction time of human-driven vehicles around the connected automated vehicle. Then we propose an optimal connected cruise controller based on the mean dynamics of human driving behavior. We test the performance of both the estimation algorithm and the connected cruise control algorithm using experimental data. We demonstrate that by combining the proposed estimation algorithm and the optimal controller, the connected automated vehicle has significantly improved performance compared to a human-driven vehicle. 相似文献
9.
This research presents an integrated optimal controller to maximize the fuel efficiency of a Hybrid Electric Vehicle (HEV) traveling on rolling terrain. The controller optimizes both the vehicle acceleration and the hybrid powertrain operation. It takes advantage of the emerging Connected Vehicle (CV) technology and utilizes present and future information as optimization input, which includes road topography, and dynamic speed limit. The optimal control problem was solved using Pontryagin’s Minimum Principle (PMP). Efforts were made to reduce the computational burden of the optimization process. The evaluation shows that the benefit of the proposed optimal controller is significant compared to regular HEV cruising at the speed limit on rolling terrain. The benefit ranges from 5.0% to 8.9% on mild slopes and from 15.7% to 16.9% on steep slopes. The variation is caused by the change of hilly road density. 相似文献
10.
The state of the practice traffic signal control strategies mainly rely on infrastructure based vehicle detector data as the input for the control logic. The infrastructure based detectors are generally point detectors which cannot directly provide measurement of vehicle location and speed. With the advances in wireless communication technology, vehicles are able to communicate with each other and with the infrastructure in the emerging connected vehicle system. Data collected from connected vehicles provides a much more complete picture of the traffic states near an intersection and can be utilized for signal control. This paper presents a real-time adaptive signal phase allocation algorithm using connected vehicle data. The proposed algorithm optimizes the phase sequence and duration by solving a two-level optimization problem. Two objective functions are considered: minimization of total vehicle delay and minimization of queue length. Due to the low penetration rate of the connected vehicles, an algorithm that estimates the states of unequipped vehicle based on connected vehicle data is developed to construct a complete arrival table for the phase allocation algorithm. A real-world intersection is modeled in VISSIM to validate the algorithms. Results with a variety of connected vehicle market penetration rates and demand levels are compared to well-tuned fully actuated control. In general, the proposed control algorithm outperforms actuated control by reducing total delay by as much as 16.33% in a high penetration rate case and similar delay in a low penetration rate case. Different objective functions result in different behaviors of signal timing. The minimization of total vehicle delay usually generates lower total vehicle delay, while minimization of queue length serves all phases in a more balanced way. 相似文献
11.
This research proposes an optimal controller to improve fuel efficiency for a vehicle equipped with automatic transmission traveling on rolling terrain without the presence of a close preceding vehicle. Vehicle acceleration and transmission gear position are optimized simultaneously to achieve a better fuel efficiency. This research leverages the emerging Connected Vehicle technology and utilizes present and future information—such as real-time dynamic speed limit, vehicle speed, location and road topography—as optimization input. The optimal control is obtained using the Relaxed Pontryagin’s Minimum Principle. The benefit of the proposed optimal controller is significant compared to the regular cruise control and other eco-drive systems. It varies with the hill length, grade, and the number of available gear positions. It ranges from an increased fuel saving of 18–28% for vehicles with four-speed transmission and 25–45% for vehicles with six-speed transmission. The computational time for the optimization is 1.0–2.1 s for the four-speed vehicle and 1.8–3.9 s for the six-speed vehicle, given a 50 s optimization time horizon and 0.1 s time step. The proposed controller can potentially be used in real-time. 相似文献
12.
In real traffic networks, travellers’ route choice is affected by traffic control strategies. In this research, we capture the interaction between travellers’ route choice and traffic signal control in a coherent framework. For travellers’ route choice, a VANET (Vehicular Ad hoc NETwork) is considered, where travellers have access to the real-time traffic information through V2V/V2I (Vehicle to Vehicle/Vehicle to Infrastructure) infrastructures and make route choice decisions at each intersection using hyper-path trees. We test our algorithm and control strategy by simulation in OmNet++ (A network communication simulator) and SUMO (Simulation of Urban MObility) under several scenarios. The simulation results show that with the proposed dynamic routing, the overall travel cost significantly decreases. It is also shown that the proposed adaptive signal control reduces the average delay effectively, as well as reduces the fluctuation of the average speed within the whole network. 相似文献
13.
To control SOx, NOx and particulate matter emission from ships, including cruise ships, emission control areas (ECAs) have been defined by the International Maritime Organization (IMO), which influences cruise planning. This paper investigates a mixed integer programming model to reschedule voyage plans by optimizing speeds, sailing patterns and ports-of-call sequences, hence reducing fuel costs. A tabu search based solution method is developed to solve the model. Computational tests on real-world data of cruise lines are conducted in order to explore the effects of ECA regulations on cruise shipping. The results show that the proposed model can save fuel costs under ECA regulations, and the designed solution method is efficient. 相似文献
14.
Transportation sector accounts for a large proportion of global greenhouse gas and toxic pollutant emissions. Even though alternative fuel vehicles such as all-electric vehicles will be the best solution in the future, mitigating emissions by existing gasoline vehicles is an alternative countermeasure in the near term. The aim of this study is to predict the vehicle CO2 emission per kilometer and determine an eco-friendly path that results in minimum CO2 emissions while satisfying travel time budget. The vehicle CO2 emission model is derived based on the theory of vehicle dynamics. Particularly, the difficult-to-measure variables are substituted by parameters to be estimated. The model parameters can be estimated by using the current probe vehicle systems. An eco-routing approach combining the weighting method and k-shortest path algorithm is developed to find the optimal path along the Pareto frontier. The vehicle CO2 emission model and eco-routing approach are validated in a large-scale transportation network in Toyota city, Japan. The relative importance analysis indicates that the average speed has the largest impact on vehicle CO2 emission. Specifically, the benefit trade-off between CO2 emission reduction and the travel time buffer is discussed by carrying out sensitivity analysis in a network-wide scale. It is found that the average reduction in CO2 emissions achieved by the eco-friendly path reaches a maximum of around 11% when the travel time buffer is set to around 10%. 相似文献
15.
Both coordinated-actuated signal control systems and signal priority control systems have been widely deployed for the last few decades. However, these two control systems are often conflicting with each due to different control objectives. This paper aims to address the conflicting issues between actuated-coordination and multi-modal priority control. Enabled by vehicle-to-infrastructure (v2i) communication in Connected Vehicle Systems, priority eligible vehicles, such as emergency vehicles, transit buses, commercial trucks, and pedestrians are able to send request for priority messages to a traffic signal controller when approaching a signalized intersection. It is likely that multiple vehicles and pedestrians will send requests such that there may be multiple active requests at the same time. A request-based mixed-integer linear program (MILP) is formulated that explicitly accommodate multiple priority requests from different modes of vehicles and pedestrians while simultaneously considering coordination and vehicle actuation. Signal coordination is achieved by integrating virtual coordination requests for priority in the formulation. A penalty is added to the objective function when the signal coordination is not fulfilled. This “soft” signal coordination allows the signal plan to adjust itself to serve multiple priority requests that may be from different modes. The priority-optimal signal timing is responsive to real-time actuations of non-priority demand by allowing phases to extend and gap out using traditional vehicle actuation logic. The proposed control method is compared with state-of-practice transit signal priority (TSP) both under the optimized signal timing plans using microscopic traffic simulation. The simulation experiments show that the proposed control model is able to reduce average bus delay, average pedestrian delay, and average passenger car delay, especially for highly congested condition with a high frequency of transit vehicle priority requests. 相似文献
16.
Ramp metering (RM) is the most direct and efficient tool for the motorway traffic flow management. However, because of the usually short length of the on-ramps, RM is typically deactivated to avoid interference of the created ramp queue with adjacent street traffic. By the integration of local RM with mainstream traffic flow control (MTFC) enabled via variable speed limits (VSL), control operation upstream of active bottlenecks could be continued even if the on-ramp is full or if the RM lower bound has been reached. Such integration is proposed via the extension of an existing local cascade feedback controller for MTFC-VSL by use of a split-range-like scheme that allows different control periods for RM and MTFC-VSL. The new integrated controller remains simple yet efficient and suitable for field implementation. The controller is evaluated in simulation for a real motorway infrastructure (a ring-road) fed with real (measured) demands and compared to stand-alone RM or MTFC-VSL, both with feedback and optimal control results. The controller’s performance is shown to meet the specifications and to approach the optimal control results for the investigated scenario. 相似文献
17.
The benefit of eco-driving of electric vehicles (EVs) has been studied with the promising connected vehicle (i.e. V2X) technology in recent years. Whereas, it is still in doubt that how traffic signal control affects EV energy consumption. Therefore, it is necessary to explore the interactions between the traffic signal control and EV energy consumption. This research aims at studying the energy efficiency and traffic mobility of the EV system under V2X environment. An optimization model is proposed to meet both operation and energy efficiency for an EV transportation system with both connected EVs (CEVs) and non-CEVs. For CEVs, a stage-wise approximation model is implemented to provide an optimal speed control strategy. Non-CEVs obey a car-following rule suggested by the well-known Intelligent Driver Model (IDM) to achieve eco-driving. The eco-driving EV system is then integrated with signal control and a bi-objective and multi-stage optimization problem is formulated. For such a large-scale problem, a hybrid intelligent algorithm merging genetic algorithm (GA) and particle swarm optimization (PSO) is implemented. At last, a validation case is performed on an arterial with four intersections with different traffic demands. Results show that cycle-based signal control could improve both traffic mobility and energy saving of the EV system with eco-driving compared to a fixed signal timing plan. The total consumed energy decreases as the CEV penetration rate augments in general. 相似文献
18.
Connected vehicle technology can be beneficial for traffic operations at intersections. The information provided by cars equipped with this technology can be used to design a more efficient signal control strategy. Moreover, it can be possible to control the trajectory of automated vehicles with a centralized controller. This paper builds on a previous signal control algorithm developed for connected vehicles in a simple, single intersection. It improves the previous work by (1) integrating three different stages of technology development; (2) developing a heuristics to switch the signal controls depending on the stage of technology; (3) increasing the computational efficiency with a branch and bound solution method; (4) incorporating trajectory design for automated vehicles; (5) using a Kalman filter to reduce the impact of measurement errors on the final solution. Three categories of vehicles are considered in this paper to represent different stages of this technology: conventional vehicles, connected but non-automated vehicles (connected vehicles), and automated vehicles. The proposed algorithm finds the optimal departure sequence to minimize the total delay based on position information. Within each departure sequence, the algorithm finds the optimal trajectory of automated vehicles that reduces total delay. The optimal departure sequence and trajectories are obtained by a branch and bound method, which shows the potential of generalizing this algorithm to a complex intersection.Simulations are conducted for different total flows, demand ratios and penetration rates of each technology stage (i.e. proportion of each category of vehicles). This algorithm is compared to an actuated signal control algorithm to evaluate its performance. The simulation results show an evident decrease in the total number of stops and delay when using the connected vehicle algorithm for the tested scenarios with information level of as low as 50%. Robustness of this algorithm to different input parameters and measurement noises are also evaluated. Results show that the algorithm is more sensitive to the arrival pattern in high flow scenarios. Results also show that the algorithm works well with the measurement noises. Finally, the results are used to develop a heuristic to switch between the different control algorithms, according to the total demand and penetration rate of each technology. 相似文献
19.
In this paper, we present results regarding the experimental validation of connected automated vehicle design. In order for a connected automated vehicle to integrate well with human-dominated traffic, we propose a class of connected cruise control algorithms with feedback structure originated from human driving behavior. We test the connected cruise controllers using real vehicles under several driving scenarios while utilizing beyond-line-of-sight motion information obtained from neighboring human-driven vehicles via vehicle-to-everything (V2X) communication. We experimentally show that the design is robust against variations in human behavior as well as changes in the topology of the communication network. We demonstrate that both safety and energy efficiency can be significantly improved for the connected automated vehicle as well as for the neighboring human-driven vehicles and that the connected automated vehicle may bring additional societal benefits by mitigating traffic waves. 相似文献
20.
This paper provides a globally optimal solution to an important problem: given a real-world route, what is the most energy-efficient way to drive a vehicle from the origin to the destination within a certain period of time. Along the route, there may be multiple stop signs, traffic lights, turns and curved segments, roads with different grades and speed limits, and even leading vehicles with pre-known speed profiles. Most of such route information and features are actually constraints to the optimal vehicle speed control problem, but these constraints are described in two different domains. The most important concept in solving this problem is to convert the distance-domain route constraints to some time-domain state and input constraints that can be handled by optimization methods such as dynamic programming (DP). Multiple techniques including cost-to-go function interpolation and parallel computing are used to reduce the computation of DP and make the problem solvable within a reasonable amount of time on a personal computer. 相似文献