首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
A characteristic of low frequency probe vehicle data is that vehicles traverse multiple network components (e.g., links) between consecutive position samplings, creating challenges for (i) the allocation of the measured travel time to the traversed components, and (ii) the consistent estimation of component travel time distribution parameters. This paper shows that the solution to these problems depends on whether sampling is based on time (e.g., one report every minute) or space (e.g., one every 500 m). For the special case of segments with uniform space-mean speeds, explicit formulae are derived under both sampling principles for the likelihood of the measurements and the allocation of travel time. It is shown that time-based sampling is biased towards measurements where a disproportionally long time is spent on the last segment. Numerical experiments show that an incorrect likelihood formulation can lead to significantly biased parameter estimates depending on the shapes of the travel time distributions. The analysis reveals that the sampling protocol needs to be considered in travel time estimation using probe vehicle data.  相似文献   

2.
Probe vehicles provide some of the most useful data for road traffic monitoring because they can acquire wide-ranging and spatiotemporally detailed information at a relatively low cost compared with traditional fixed-point observation. However, current GPS-equipped probe vehicles cannot directly provide us volume-related variables such as flow and density. In this paper, we propose a new probe vehicle-based estimation method for obtaining volume-related variables by assuming that a probe vehicle can measure the spacing to its leading one. This assumption can be realized by utilizing key technologies in advanced driver assistance systems that are expected to spread in the near future. We developed a method of estimating the flow, density, and speed from the probe vehicle data without exogenous assumptions on traffic flow characteristics, such as a fundamental diagram. In order to quantify the characteristics of the method, we performed a field experiment at a real-world urban expressway by employing prototypes of the probe vehicles with spacing measurement equipment. The result showed that the proposed method could accurately estimate the 5 min and hourly traffic volumes with probe vehicle penetration rate of 3.5% and 0.2%, respectively.  相似文献   

3.
Road traffic noise models are fundamental tools for designing and implementing appropriate prevention plans to minimize and control noise levels in urban areas. The objective of this study is to develop a traffic noise model to simulate the average equivalent sound pressure level at road intersections based on traffic flow and site characteristics, in the city of Cartagena de Indias (Cartagena), Colombia. Motorcycles are included as an additional vehicle category since they represent more than 30% of the total traffic flow and a distinctive source of noise that needs to be characterized. Noise measurements are collected using a sound level meter Type II. The data analysis leads to the development of noise maps and a general mathematical model for the city of Cartagena, Colombia, which correlates the sound levels as a function of vehicle flow within road intersections. The highest noise levels were 79.7 dB(A) for the road intersection María Auxiliadora during the week (business days) and 77.7 dB(A) for the road intersection India Catalina during weekends (non-business days). Although traffic and noise are naturally related, the intersections with higher vehicle flow did not have the highest noise levels. The roadway noise for these intersections in the city of Cartagena exceeds current limit standards. The roadway noise model is able to satisfactorily predict noise emissions for road intersections in the city of Cartagena, Colombia.  相似文献   

4.
The suitability of an electric vehicle of a given range to serve in place of a given conventional vehicle is not limited by the daily travel over distances within that that range, but rather by the occasional inconvenience of finding alternative transport for longer trips. While the frequency of this inconvenience can be computed from usage data, the willingness of individual users to accept that replacement depends on details of available transportation alternatives and their willingness to use them. The latter can be difficult to assess. Fortunately, 65% of US households have access to the most convenient alternative possible: a second car. In this paper we describe an analysis of prospective EV acceptance and travel electrification in two-car households in the Puget Sound region. We find that EVs with 60 miles of useful range could be acceptable (i.e. incur inconvenience no more than three days each year) to nearly 90% of two-car households and electrify nearly 55% of travel in those households (32% of all travel). This compares to 120 miles range required to achieve the same fraction of electrified travel via one-for-one replacement of individual vehicles. Even though only one third of personal vehicles in the US may be replaced in this paradigm, the ‘EV as a second-car’ concept is attractive in that a significant fraction of travel can be electrified by vehicles with modest electric range and virtually no dependence on public charging infrastructure.  相似文献   

5.
This paper describes a methodology for predicting the delay to major street through vehicles at two-way stop-controlled intersections. This delay is incurred when major street left-turn demand exceeds the available storage area and blocks the adjacent through lane. The through lane blockage problem does not generally occur with significant frequency on streets with divided cross sections that have left-turn bays or lanes; however, it frequently occurs on undivided streets due to their lack of left-turn storage. To minimize this delay, through drivers often merge with vehicles in the adjacent through lane—if there is an adequate gap for them to safely merge into. If there is no merge opportunity, then the through drivers will stay in the inside lane until the queue ahead dissipates. The through vehicle delay predicted by the methodology was found to be relatively small (i.e. less than 5 s veh−1) when compared with delays commonly incurred by non-priority movements at unsignalized intersections. However, when expressed in terms of total vehicle hours of delay, the effect can be quite significant. In general, through vehicle delay increases with increasing approach flow rate and left-turn percentage. However, at flow rates in excess of about 1400 veh h−1, delays increase very rapidly and there is evidence that larger left-turn percentages may have lower delays. ©  相似文献   

6.
The analysis, assessment and estimation of noise levels in the vicinity of intersections is a more complex problem than a similar analysis for roads and streets. This is due to the varied geometry of the intersections, differences in the loads of individual movements, participation of heavy vehicles and mass transport vehicles, as well as the various types of traffic management and traffic control. This article analyses the influence of intersection type and traffic characteristics on the noise levels in the vicinity of classic channelized intersections with signalization, roundabouts and signalized roundabouts. Based on the conducted measurements, it has been established that, with comparable traffic parameters and the same distance from the geometric centre of the intersection, the LAeq value for signalized roundabouts is 2.5–10.8 dB higher in comparison to classic channelized intersections with signalization and 3.3–6.7 dB higher in relations to the analysed roundabout. Additionally the differences between LAeq levels at individual entries at the same signalized roundabouts may reach the value of approximately 4.5 dB. Such situation is influenced by differences in the intersection geometry, diameter of the intersection’s central island, traffic flow type, traffic management at the entries and traffic volume, especially the amount and traffic movements of multiple axle heavy vehicles. These factors have been analysed in detail in relation to signalized roundabouts in this paper.  相似文献   

7.
This research evaluated the potential for wireless dynamic charging (charging while moving) to address range and recharge issues of modern electric vehicles by considering travel to regional destinations in California. A 200-mile electric vehicle with a real range of 160 miles plus 40 miles reserve was assumed to be used by consumers in concert with static and dynamic charging as a strict substitute for gasoline vehicle travel. Different combinations of wireless charging power (20–120 kW) and vehicle range (100–300 miles) were evaluated. One of the results highlighted in the research indicated that travel between popular destinations could be accomplished with a 200-mile EV and a 40 kW dynamic wireless charging system at a cost of about $2.5 billion. System cost for a 200-mile EV could be reduced to less than $1 billion if wireless vehicle charging power levels were increased to 100 kW or greater. For vehicles consuming 138 kWh of dynamic energy per year on a 40 kW dynamic system, the capital cost of $2.5 billion plus yearly energy costs could be recouped over a 20-year period at an average cost to each vehicle owner of $512 per year at a volume of 300,000 vehicles or $168 per year at a volume of 1,000,000 vehicles. Cost comparisons of dynamic charging, increased battery capacity, and gasoline refueling were presented. Dynamic charging, coupled with strategic wayside static charging, was shown to be more cost effective to the consumer over a 10-year period than gasoline refueling at $2.50 or $4.00 per gallon. Notably, even at very low battery prices of $100 per kWh, the research showed that dynamic charging can be a more cost effective approach to extending range than increasing battery capacity.  相似文献   

8.
Reducing the air pollution from increases in traffic congestion in large cities and their surroundings is an important problem that requires changes in travel behavior. Road pricing is an effective tool for reducing air pollution, as reflected currently urban road pricing outcomes (Singapore, London, Stockholm and Milan). A survey was conducted based on establishing a hypothetical urban road pricing system in Madrid (a random sample size n = 1298). We developed a forecast air pollution model with time series analysis to evaluate the consequences of possible air pollution decreases in Madrid. Results reveal that the hypothetical road pricing for Madrid could have highly significant effects on decreasing air pollution outside of the city and in the inner city during the peak operating time periods of maximum congestion (morning peak hours from 7:00 to 10:00 and evening peak hours from 18:00 to 20:00). Furthermore, this system could have significant positive effects on a shift toward using public transport and non-motorized modes inside the hypothetical toll zone. This reveals that the system has a high capacity to motivate a decrease in air pollution and impose more sustainable behavior for public transport users.  相似文献   

9.
The variance in fuel consumption caused by driving style (DS) difference exceeds 10% and reaches a maximum of 20% under different road conditions, even for experienced bus drivers. To study the influence of DS on fuel consumption, a method for summarizing DS characteristic parameters on the basis of vehicle-engine combined model is proposed. With this method, the author proposes 26 DS characteristic parameters related to fuel consumption in the accelerating, normal running, and decelerating processes of vehicles. The influence of DS characteristic parameters on fuel consumption under different road conditions and vehicle masses is quantitatively analyzed on the basis of real driving data over 100,000 km. Analysis results show that the influence of DS characteristic parameters on fuel consumption changes with road condition and vehicle mass, with road condition serving a more important function. However, the DS characteristics in the accelerating process of vehicles are decisive for fuel consumption under different conditions. This study also calculates the minimum sample size necessary for analyzing the effect of DS characteristics on fuel consumption. The statistical analysis based on the real driving data over 2500 km can determine the influence of DS on fuel consumption under a given power-train configuration and road condition. The analysis results can be employed to evaluate the fuel consumption of drivers, as well as to guide the design of Driver Advisory System for Eco-driving directly.  相似文献   

10.
Prior research on ultrafine particles (UFP) emphasizes that concentrations are especially high on-highway, and that time on highways contribute disproportionately to total daily exposures. This study estimates individual and population exposure to ultra-fine particles in the Minneapolis – St. Paul (Twin Cities) metropolitan area, Minnesota. Our approach combines a real-time model of on-highway size-resolved UFP concentrations (32 bins, 5.5–600 nm); individual travel patterns, derived from GPS travel trajectories collected in 144 individual vehicles (123 h at locations with UFP estimates among 624 vehicle-hours of travel); and, loop-detector data, indicating real-time traffic conditions throughout the study area. The results provide size-resolved spatial and temporal patterns of exposure to UFP among freeway users. On-highway exposures demonstrate significant variability among users, with highest concentrations during commuting peaks and near highway interchanges. Findings from this paper could inform future epidemiological studies in on-road exposure to UFP by linking personal exposures to traffic conditions.  相似文献   

11.
This research proposes an optimal controller to improve fuel efficiency for a vehicle equipped with automatic transmission traveling on rolling terrain without the presence of a close preceding vehicle. Vehicle acceleration and transmission gear position are optimized simultaneously to achieve a better fuel efficiency. This research leverages the emerging Connected Vehicle technology and utilizes present and future information—such as real-time dynamic speed limit, vehicle speed, location and road topography—as optimization input. The optimal control is obtained using the Relaxed Pontryagin’s Minimum Principle. The benefit of the proposed optimal controller is significant compared to the regular cruise control and other eco-drive systems. It varies with the hill length, grade, and the number of available gear positions. It ranges from an increased fuel saving of 18–28% for vehicles with four-speed transmission and 25–45% for vehicles with six-speed transmission. The computational time for the optimization is 1.0–2.1 s for the four-speed vehicle and 1.8–3.9 s for the six-speed vehicle, given a 50 s optimization time horizon and 0.1 s time step. The proposed controller can potentially be used in real-time.  相似文献   

12.
This study investigates the important problem of determining a reliable path in a stochastic network with correlated link travel times. First, the distribution of path travel time is quantified by using trip records from GPS probe vehicles. Second, the spatial correlation of link travel time is explicitly considered by using a correlation coefficient matrix, which is incorporated into the α-reliable path problem by Cholesky decomposition. Third, the Lagrangian relaxation based framework is used to handle the α-reliable path problem, by which the intractable problem with a non-linear and non-additive structure can be decomposed into several easy-to-solve problems. Finally, the path-finding performance of this approach is tested on a real-world network. The results show that 15 iterations of calculation can yield a small relative gap between upper and lower bounds of the optimal solution and the average running time is about 5 s for most OD settings. The applicability of α-reliable path finding is validated by a case study.  相似文献   

13.
Lithium traction batteries are a key enabling technology for plug-in electric vehicles (PEVs). Traction battery manufacture contributes to vehicle production emissions, and battery performance can have significant effects on life cycle greenhouse gas (GHG) emissions for PEVs. To assess emissions from PEVs, a life cycle perspective that accounts for vehicle production and operation is needed. However, the contribution of batteries to life cycle emissions hinge on a number of factors that are largely absent from previous analyses, notably the interaction of battery chemistry alternatives and the number of electric vehicle kilometers of travel (e-VKT) delivered by a battery. We compare life cycle GHG emissions from lithium-based traction batteries for vehicles using a probabilistic approach based on 24 hypothetical vehicles modeled on the current US market. We simulate life-cycle emissions for five commercial lithium chemistries. Examining these chemistries leads to estimates of emissions from battery production of 194–494 kg CO2 equivalent (CO2e) per kWh of battery capacity. Combined battery production and fuel cycle emissions intensity for plug-in hybrid electric vehicles is 226–386 g CO2e/e-VKT, and for all-electric vehicles 148–254 g CO2e/e-VKT. This compares to emissions for vehicle operation alone of 140–244 g CO2e/e-VKT for grid-charged electric vehicles. Emissions estimates are highly dependent on the emissions intensity of the operating grid, but other upstream factors including material production emissions, and operating conditions including battery cycle life and climate, also affect life cycle GHG performance. Overall, we find battery production is 5–15% of vehicle operation GHG emissions on an e-VKT basis.  相似文献   

14.
Driven by sustainability objectives, Australia like many nations in the developed world, is considering the option of battery electric vehicles (BEVs) as an alternative to conventional internal combustion engine vehicles (ICEVs). In addition to issues of capital and running costs, crucial questions remain over the specifications of such vehicles, particularly the required driving range, recharge time, re-charging infrastructure, performance, and other attributes that will be of importance to consumers. With this in mind, this paper assesses (hypothetically) the extent to which current car travel needs could be met by BEVs for a sample of motorists in Sydney assuming a home-based charging set-up, which is likely to be the primary option for early adopters of the technology. The approach uses five weeks of driving data recorded by GPS technology and builds up home-home tours to assess the distances between (in effect) charging possibilities. An energy consumption model based on characteristics of the vehicle, and the speeds recorded by the GPS is adapted to determine the charge used, while a battery recharge function is used to determine charging times based on the current battery level. Among the most pertinent findings are that over the five weeks, (i) BEVs with a range as low as 60 km and a simple home-charge set-up would be able to accommodate well over 90% of day-to-day driving, (ii) however the incidence of tours requiring out-of-home charging increases markedly for vehicles below 24 kWh (170 km range), (iii) recharge time in itself has little impact on the feasibility of BEVs because vehicles spend the majority of their time parked and (iv) effective range can be dramatically impacted by both how a vehicle is driven and use of electrical auxiliaries, and (v) while unsuitable for long, high-speed journeys without some external re-charging options, BEVs appear particularly suited for the majority of day-to-day city driving in big cities where average journey speeds of 34 km/h are close to optimal in terms of maximising vehicle range. The paper has implications for both policy-makers and auto manufacturers in breaking down some of the (perceived) barriers to greater uptake of BEVs in the future.  相似文献   

15.
The benefit of using a PHEV comes from its ability to substitute gasoline with electricity in operation. Defined as the proportion of distance traveled in the electric mode, the utility factor (UF) depends mostly on the battery capacity, but also on many other factors, such as travel pattern and recharging pattern. Conventionally, the UFs are calculated based on the daily vehicle miles traveled (DVMT) by assuming motorists leave home in the morning with a full battery, and no charge occurs before returning home in the evening. Such an assumption, however, ignores the impact of the heterogeneity in both travel and charging behavior, such as going back home more than once in a day, the impact of available charging time, and the price of gasoline and electricity. Moreover, the conventional UFs are based on the National Household Travel Survey (NHTS) data, which are one-day travel data of each sample vehicle. A motorist’s daily travel distance variation is ignored. This paper employs the GPS-based longitudinal travel data (covering 3–18 months) collected from 403 vehicles in the Seattle metropolitan area to investigate how such travel and charging behavior affects UFs. To do this, for each vehicle, we organized trips to a series of home and work related tours. The UFs based on the DVMT are found close to those based on home-to-home tours. On the other hand, it is seen that the workplace charge opportunities significantly increase UFs if the CD range is no more than 40 miles.  相似文献   

16.
Physical inactivity of children and adolescents is a major public health challenge of the modern era but, when adequately promoted and nurtured, active travel offers immediate health benefits and forms future sustainable and healthy travel habits. This study explores jointly the choice and the extent of active travel of young adolescents while considering walking and cycling as distinct travel forms, controlling for objective urban form measures, and taking both a “street-buffer” looking at the immediate home surroundings and a “transport-zone” looking at wider neighborhoods. A Heckman selection model represents the distance covered while cycling (walking) given the mode choice being bicycle (walk) for a representative sample of 10–15 year-olds from the Capital Region of Denmark extracted from the Danish national travel survey. Results illustrate the necessity of different urban environments for walking and cycling, as the former relates to “street-buffer” urban form measures and the latter also to “transport-zone ” ones. Results also show that lessening the amount and the density of car traffic, diminishing the movement of heavy vehicles in local streets, reducing the conflict points with the density of intersections, and intervening on crash frequency and severity, would increase the probability and the amount of active travel by young adolescents. Last, results indicate that zones in rural areas and at a higher percentage of immigrants are likely to have lower probability and amount of active travel by young adolescents.  相似文献   

17.
At two-way stop-controlled (TWSC) rural intersections, a right-turning driver who is departing the minor road may select an improper gap and subsequently may be involved in a rear-end collision with another vehicle approaching on the rightmost lane on the major road. This paper provides perceptual framework and algorithm design of a proposed infrastructure-based collision warning system that has the potential to aid unprotected right-turning drivers at TWSC rural intersections. The proposed system utilizes a radar sensor that measures the location, speed, and acceleration of the approaching vehicle on the major road. Based on these measurements, the system’s algorithm determines if there will be any potential conflict between the approaching and the turning vehicles and warns the driver of the latter vehicle if such a conflict is found. The algorithm is based on realistic acceleration profile of the turning vehicle to estimate its acceleration rates at different times so that the system can accurately estimate the time and distance needed for the departing vehicle to accelerate to the same speed as for the approaching vehicle. That realistic acceleration profile is established using actual experimental data collected by a Global Positioning System (GPS) data logger device that was used to record the positions and instantaneous speeds of different right-turning vehicles at 1-s intervals. The algorithm also gives consideration to the time needed by the driver of the departing vehicle to perceive the message displayed by the system and react to it (to start departure) where it was found that 95% of drivers have a perception–reaction time of 1.89 s or less. A methodology is also illustrated to select the maximum measurement errors suggested for the detectors in measuring the locations of the approaching vehicle on the major road where it was found that the accuracy of the system significantly deteriorates if the errors in measuring the distance and the azimuth angle exceed 0.1 m and 0.2°, respectively. An application example is provided to illustrate the algorithm used by the proposed system.  相似文献   

18.
The purpose of our study is to develop a “corrected average emission model,” i.e., an improved average speed model that accurately calculates CO2 emissions on the road. When emissions from the central roads of a city are calculated, the existing average speed model only reflects the driving behavior of a vehicle that accelerates and decelerates due to signals and traffic. Therefore, we verified the accuracy of the average speed model, analyzed the causes of errors based on the instantaneous model utilizing second-by-second data from driving in a city center, and then developed a corrected model that can improve the accuracy. We collected GPS data from probe vehicles, and calculated and analyzed the average emissions and instantaneous emissions per link unit. Our results showed that the average speed model underestimated CO2 emissions with an increase in acceleration and idle time for a speed range of 20 km/h and below, which is the speed range for traffic congestion. Based on these results, we analyzed the relationship between average emissions and instantaneous emissions according to the average speed per link unit, and we developed a model that performed better with an improved accuracy of calculated CO2 emissions for 20 km/h and below.  相似文献   

19.
Experts predict that new automobiles will be capable of driving themselves under limited conditions within 5–10 years, and under most conditions within 10–20 years. Automation may affect road vehicle energy consumption and greenhouse gas (GHG) emissions in a host of ways, positive and negative, by causing changes in travel demand, vehicle design, vehicle operating profiles, and choices of fuels. In this paper, we identify specific mechanisms through which automation may affect travel and energy demand and resulting GHG emissions and bring them together using a coherent energy decomposition framework. We review the literature for estimates of the energy impacts of each mechanism and, where the literature is lacking, develop our own estimates using engineering and economic analysis. We consider how widely applicable each mechanism is, and quantify the potential impact of each mechanism on a common basis: the percentage change it is expected to cause in total GHG emissions from light-duty or heavy-duty vehicles in the U.S. Our primary focus is travel related energy consumption and emissions, since potential lifecycle impacts are generally smaller in magnitude. We explore the net effects of automation on emissions through several illustrative scenarios, finding that automation might plausibly reduce road transport GHG emissions and energy use by nearly half – or nearly double them – depending on which effects come to dominate. We also find that many potential energy-reduction benefits may be realized through partial automation, while the major energy/emission downside risks appear more likely at full automation. We close by presenting some implications for policymakers and identifying priority areas for further research.  相似文献   

20.
Cycling and walking are being promoted in many urban areas as alternatives to motorised transport for health, environmental, and financial reasons. The reduced congestion and resulting decrease in the overall amount of pollution reduced can be expected to result in health benefits for the community. However, active commuters, due to their increased respiration rates and often increased travel times can expect to receive larger doses of air pollution compared with those using motorised forms of transport. However, given the large dropoff in concentrations away from a road, it can be expected that significant reductions can be achieved even with relatively small increases in separation between the path of cyclists/pedestrians and motor vehicles.This study presents a simple methodology for calculating the separation needed for cyclists and pedestrians to experience the same air pollution dose as car commuters. An example is given based on carbon monoxide (CO) data collected in a field campaign consisting of a car driver, a cyclist and a pedestrian travelling on a 2600 metre loop of road in Auckland. For this case study, the estimated distance from the centreline needed for cyclists and pedestrians to receive an equivalent dose of CO as motorists was found to range from 5.8 to 14.2 m depending on the commuting mode and the dispersion state of the atmosphere at the site. This was equal to a CO concentration reduction of 0.1–0.14 ppm per metre. Recommendations on facility modifications and route selections have been made to make active mode commuting safer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号