共查询到20条相似文献,搜索用时 0 毫秒
1.
On-demand traffic fleet optimization requires operating Mobility as a Service (MaaS) companies such as Uber, Lyft to locally match the offer of available vehicles with their expected number of requests referred to as demand (as well as to take into account other constraints such as driver’s schedules and preferences). In the present article, we show that this problem can be encoded into a Constrained Integer Quadratic Program (CIQP) with block independent constraints that can then be relaxed in the form of a convex optimization program. We leverage this particular structure to yield a scalable distributed optimization algorithm corresponding to computing a gradient ascent in a dual space. This new framework does not require the drivers to share their availabilities with the operating company (as opposed to standard practice in today’s mobility as a service companies). The resulting parallel algorithm can run on a distributed smartphone based platform. 相似文献
2.
A fleet of vessels and helicopters is needed to support maintenance operations at offshore wind farms. The cost of this fleet constitutes a major part of the total maintenance costs, hence keeping an optimal or near-optimal fleet is essential to reduce the cost of energy. In this paper we study the vessel fleet size and mix problem that arises for the maintenance operations at offshore wind farms, and propose a stochastic three-stage programming model. The stochastic model considers uncertainty in vessel spot rates, weather conditions, electricity prices and failures to the system. The model is tested on realistic-sized problem instances, and the results show that it is valuable to consider uncertainty and that the proposed model can be used to solve instances of a realistic size. 相似文献
3.
We consider a two-stage stochastic extension of the bilevel pricing model introduced by Labbé et al. (1998). In the first stage, the leader sets tariffs on a subset of arcs of a transportation network, with the aim of maximizing profits while, at the lower level, flows are assigned to cheapest paths of a multicommodity transportation network. In the second stage, the situation repeats itself under the constraint that tariffs should not differ too widely from those set at the first stage, a condition that frequently arises in practice. We analyze properties of the model, provide numerical illustrations, and open avenues for further research into this area. 相似文献
4.
The airline schedule planning problem is defined as the sequence of decisions that need to be made to obtain a fully operational flight schedule. Historically, the airline scheduling problem has been sequentially solved. However, there have already been many attempts in order to obtain airline schedules in an integrated way. But due to tractability issues it is nowadays impossible to determine a fully operative and optimal schedule with an integrated model which accounts for all the key airline related aspects such as competitive effects, stochastic demand figures and uncertain operating conditions. Airlines usually develop base schedules, which are obtained much time in advance to the day of operations and not accounting for all the related uncertainty. This paper proposes a mathematical model in order to update base schedules in terms of timetable and fleet assignments while considering stochastic demand figures and uncertain operating conditions, and where robust itineraries are introduced in order to ameliorate miss-connected passengers. The proposed model leads to a large-scale problem which is difficult to be solved. Therefore, a novel improved and accelerated Benders decomposition approach is proposed. The analytical work is supported with case studies involving the Spanish legacy airline, IBERIA. The presented approach shows that the number of miss-connected passengers may be reduced when robust planning is applied. 相似文献
5.
A fleet sizing problem (FSP) in a road freight transportation company with heterogeneous fleet and its own technical back‐up facilities is considered in the paper. The mathematical model of the decision problem is formulated in terms of multiple objective mathematical programming based on queuing theory. Technical and economical criteria as well as interests of different stakeholders are taken into account in the problem formulation. The solution procedure is composed of two steps. In the first one a sample of Pareto‐optimal solutions is generated by an original program called MEGROS. In the second step this set is reviewed and evaluated, according to the Decision Maker's (DM's) model of preferences. The evaluation of solutions is carried out with an application of an interactive multiple criteria analysis method, called Light Beam Search (LBS). Finally, the DM selects the most desirable, compromise solution. 相似文献
6.
This paper proposes a unified approach to modeling heterogonous risk-taking behavior in route choice based on the theory of stochastic dominance (SD). Specifically, the first-, second-, and third-order stochastic dominance (FSD, SSD, TSD) are respectively linked to insatiability, risk-aversion and ruin-aversion within the framework of utility maximization. The paths that may be selected by travelers of different risk-taking preferences can be obtained from the corresponding SD-admissible paths, which can be generated using general dynamic programming. This paper also analyzes the relationship between the SD-based approach and other route choice models that consider risk-taking behavior. These route choice models employ a variety of reliability indexes, which often make the problem of finding optimal paths intractable. We show that the optimal paths with respect to these reliability indexes often belong to one of the three SD-admissible path sets. This finding offers not only an interpretation of risk-taking behavior consistent with the SD theory for these route choice models, but also a unified and computationally viable solution approach through SD-admissible path sets, which are usually small and can be generated without having to enumerate all paths. A generic label-correcting algorithm is proposed to generate FSD-, SSD-, and TSD-admissible paths, and numerical experiments are conducted to test the algorithm and to verify the analytical results. 相似文献
7.
Ensuring a fleet of green aircraft is a basic step in mitigating aviation pollution issues that are expected to be worsen in the coming years due to rapid air traffic growth. This study proposed a novel methodology in green fleet planning in which both profit and green performance of airline are considered simultaneously and explicitly. To do this, a Green Fleet Index (GFI) is derived as an indicator to quantify the green performance of airline’s fleet. It measures the degree of airline compliance with a standard requirement in terms of emission, noise, and fuel consumption. A bi-objective dynamic programming model is then formulated to find optimal aircraft acquisition (lease or purchase) decision by minimizing GFI and maximizing profit. Several interesting results are obtained: (1) considering environmental issue as secondary objective yields a greener fleet; (2) airline’s profit is affected, but could be recovered from environmental cost savings; (3) increasing load factor is an effective operational improvement strategy to enhance airline’s green performance and raise profit level. It is anticipated that the framework developed in this study could assist airlines to make a smart decision when considering the need to be green. 相似文献
8.
In this paper, the maritime fleet renewal problem (MFRP) is extended to include regional limitations in the form of emission control areas. The motivation for including this aspect is that strengthening of emission regulations in such areas is expected to be challenging for deep sea shipping in the years to come. In the proposed model, various means to cope with these stricter emission regulations are evaluated for new vessels, and the possibility of upgrading existing vessels with new emission reduction technology is introduced. We consider future fuel prices to be important for the problem, and have chosen to treat them as uncertain, and thus, a stochastic programming model is chosen. A fleet renewal problem faced by the liner shipping operator Wallenius Wilhelmsen Logistics, concerning whether to use low sulphur fuel or have an exhaust gas scrubber system installed to comply with sulphur regulation in emission control areas from 2015, is used as a case study. Furthermore, tests show that the savings from including the aspect of emission control areas in the MFRP are substantial. 相似文献
9.
In this paper we present a solution methodology based on the stochastic branch and bound algorithm to find optimal, or close to optimal, solutions to the stochastic airport runway scheduling problem. The objective of the scheduling problem is to find a sequence of aircraft operations on one or several runways that minimizes the total makespan, given uncertain aircraft availability at the runway. Enhancements to the general stochastic branch and bound algorithm are proposed and we give the specific details pertaining to runway scheduling. We show how the algorithm can be terminated early with solutions that are close to optimal, and investigate the impact of the uncertainty level. The computational experiment indicates that the sequences obtained using the stochastic branch and bound algorithm have, on average, 5–7% shorter makespans than sequences obtained using deterministic sequencing models. In addition, the proposed algorithm is able to solve instances with 14 aircraft using less than 1 min of computation time. 相似文献
10.
The problem of optimal container vessels deployment is one of great significance for the liner shipping industry. Although the pioneering work on this problem dates back to the early 1990s, only until recently have researchers started to acknowledge and account for the significant amount of uncertainty present in shipping demand in real world container shipping. In this paper, new analytical results are presented to further relax the input requirements for this problem. Specifically, only the mean and variance of the maximum shipping demand are required to be known. An optional symmetry assumption is shown to further reduce the feasible region and deployment cost for typical confidence levels. Moreover, unlike previous work that tends to ignore stochastic dependencies between the shipping demands on the various routes (that are known to exist in the real world), our models account for such dependencies in the most general setting to date. A salient feature of our modeling approach is that the exact dependence structure does not need to be specified, something that is hard, if not simply impossible, to determine in practice. A numerical case study is provided to illustrate the proposed models. 相似文献
11.
This paper presents a framework for addressing uncertainty and risk for large-scale transportation investments involving public–private participation. Demand, fare/toll and demand responsive costs are considered in the uncertainty analysis. Uncertainty analysis provides information on economic feasibility of the project. A set of relaxation policies is proposed to form various Ownership, Tenure and Governance (OTG) strategies reflecting the nature and level of participation by the public and private entity. A Monte Carlo Simulation-based Value at Risk is used to quantify risk. Finally, a methodology is proposed to integrate uncertainty and risk. The framework is tested on the proposed multibillion dollar Detroit River International Crossing connecting the cities of Detroit in the USA with Windsor in Canada. The analysis provides insights to probable outcomes for this transportation infrastructure investment under different OTG scenarios. 相似文献
12.
The routing, scheduling and fleet deployment is an important integrated planning problem faced by liner shipping companies which also lift load from the spot market. This paper is concerned with coordinating the decisions of the assignment of ships to contractual and spot voyages, and the determination of ship routes and schedules in order to maximize profit. We propose a new model for representing voyages as nodes of a directed graph which is used to build a mixed integer programming formulation. Besides contractual and spot nodes, another type of node is put forward to represent a combination of a contractual voyage with one or more spot voyages. In addition, the concept of dominated nodes is introduced in order to discard them and reduce the effort of the search for an optimal solution. A set of test problems has been generated taking into account real world assumptions. The test problems are solved by an optimization software and computational results are reported. The results show the potential of the approach to solve test problems of moderate size. 相似文献
13.
Risk management is an inherent part of supplier selection. While companies are enjoying the benefits of outsourcing, risks brought by this practice should be taken into account in the process of decision making. This paper presents a multiobjective stochastic sequential supplier allocation model to help in supplier selection under uncertainty. Demand for products, capacities at suppliers as well as transportation and other variable costs are the main sources of uncertainty and are modeled using probability distributions. Disruptions are exogenous events and the model provides proactive mitigation strategies against disruptions by assigning backup suppliers who can be used in case of a default at a primary supplier. When there is no disruption, the model’s solution is an optimal supplier order assignment, considering operational risks. 相似文献
14.
The optimal (economic) speed of oceangoing vessels has become of increased importance due to the combined effect of low freight rates and volatile bunker prices. We examine the problem for vessels operating in the spot market in a tramp mode. In the case of known freight rates between origin destination combinations, a dynamic programming formulation can be applied to determine both the optimal speed and the optimal voyage sequence. Analogous results are derived for random freight rates of known distributions. In the case of independent rates the economic speed depends on fuel price and the expected freight rate, but is independent of the revenue of the particular voyage. For freight rates that depend on a state of the market Markovian random variable, economic speed depends on the market state as well, with increased speed corresponding to good states of the market. The dynamic programming equations in our models differ from those of Markovian decision processes so we develop modifications of standard solution methods, and apply them to small examples. 相似文献
15.
In a case study of a Norwegian heavy-duty truck transport company, we analyzed data generated by the online fleet management system Dynafleet. The objective was to find out what influenced fuel consumption. We used a set of driving indicators as explanatory variables: load weight, trailer type, route, brake horsepower, average speed, automatic gearshift use, cruise-control use, use of more than 90% of maximum torque, a dummy variable for seasonal variation, use of running idle, use of driving in highest gear, brake applications, number of stops and rolling without engine load. We found, via multivariate regression analysis and corresponding mean elasticity analysis, that with driving on narrow mountainous roads, variables associated with infrastructure and vehicle properties have a larger influence than driver-influenced variables do. However, we found that even under these challenging infrastructure conditions, driving behavior matters. Our findings and analysis could help transport companies decide how to use fleet management data to reduce fuel consumption by choosing the right vehicle for each transportation task and identifying environmentally and economically benign ways of driving. 相似文献
16.
This paper develops various chance-constrained models for optimizing the probabilistic network design problem (PNDP), where we differentiate the quality of service (QoS) and measure the related network performance under uncertain demand. The upper level problem of PNDP designs continuous/discrete link capacities shared by multi-commodity flows, and the lower level problem differentiates the corresponding QoS for demand satisfaction, to prioritize customers and/or commodities. We consider PNDP variants that have either fixed flows (formulated at the upper level) or recourse flows (at the lower level) according to different applications. We transform each probabilistic model into a mixed-integer program, and derive polynomial-time algorithms for special cases with single-row chance constraints. The paper formulates benchmark stochastic programming models by either enforcing to meet all demand or penalizing unmet demand via a linear penalty function. We compare different models and approaches by testing randomly generated network instances and an instance built on the Sioux–Falls network. Numerical results demonstrate the computational efficacy of the solution approaches and derive managerial insights. 相似文献
17.
Rico Merkert David A. Hensher 《Transportation Research Part A: Policy and Practice》2011,45(7):686-695
As a result of the liberalisation of airline markets; the strong growth of low cost carriers; the high volatility in fuel prices; and the recent global financial crisis, the cost pressure that airlines face is very substantial. In order to survive in these very competitive environments, information on what factors impact on costs and efficiency of airlines is crucial in guiding strategic change. To evaluate key determinants of 58 passenger airlines’ efficiency, this paper applies a two-stage Data Envelopment Analysis (DEA) approach, with partially bootstrapped random effects Tobit regressions in the second stage. Our results suggest that the effects of route optimisation, in the sense of average stage length of the fleet, are limited to airline technical efficiency. We show that airline size and key fleet mix characteristics, such as aircraft size and number of different aircraft families in the fleet, are more relevant to successful cost management of airlines since they have significant impacts on all three types of airline efficiency: technical, allocative and, ultimately, cost efficiency. Our results also show that despite the fuel saving benefits of younger aircraft, the age of an airline’s fleet has no significant impact on its technical efficiency, but does have a positive impact on its allocative and cost efficiency. 相似文献
18.
The management of products’ end-of-life and the recovery of used products has gained significant importance in recent years. In this paper, we address the carbon footprint-based problem that arises in a closed-loop supply chain where returned products are collected from customers. These returned products can either be disposed of or be remanufactured to be resold as new ones. Given this environment, an optimization model for a closed-loop supply chain (CLSC) in which carbon emission is expressed in terms of environmental constraints, i.e., carbon emission constraints, is developed. These constraints aim to limit the carbon emission per unit of product supplied with different transportation modes. Here, we design a closed-loop network where capacity limits, single-item management and uncertainty on product demands and returns are considered. First, fuzzy mathematical programming is introduced for uncertain modeling. Then, the statistical approach to the possibility to synthesize fuzzy information is utilized. Therefore, using a defined possibilistic mean and variance, we transform the proposed fuzzy mathematical model into a crisp form to facilitate efficient computation and analysis. Finally, the risk caused by violating the estimated resource constraints is analyzed so that decision makers (DMs) can trade off between the expected cost savings and the expected risk. We utilize data from a company located in Iran. 相似文献
19.
We analyze the double moral hazard problem at the joint venture type airport–airline vertical relationship, where two parties both contribute efforts to the joint venture but neither of them can see the other’s efforts. With the continuous-time stochastic dynamic programming model, we show that by the de-centralized utility maximizations of two parties under very strict conditions, i.e., optimal efforts’ cost being negligible and their risk averse parameters both asymptotically approaching to zero, the vertical contract could be agreed as the optimal sharing rule, which is the linear function of the final state with the slope being the product of their productivity difference and uncertainty (diffusion rate) level index.If both parties’ productivities are same, or the diffusion rate of the underlying process is unity, optimal linear sharing rule do not depend on the final state. If their conditions not dependent on final state are symmetric as well, then risk sharing disappears completely. In numerical examples, we illustrate the complex impact of uncertainty increase and end-of-period load factor improvement on the optimal sharing rule, and the relatively simple impact on total utility levels. 相似文献
20.
《运输规划与技术》2012,35(8):777-824
ABSTRACTIn this paper, a fuzzy-stochastic optimization model is developed for an intermodal fleet management system of a large international transportation company. The proposed model integrates various strategic, tactical and operational level decisions simultaneously. Since real-life fleet planning problems may involve different types of uncertainty jointly such as randomness and fuzziness, a hybrid chance-constrained programming and fuzzy interactive resolution-based approach is employed. Therefore, stochastic import/export freight demand and fuzzy transit times, truck/trailer availabilities, the transport capacity of Ro-Ro vessels, bounds on block train services, etc. can also be taken into account concurrently. In addition to minimize overall transportation costs, optimization of total transit times and CO2 emission values are also incorporated in order to provide sustainable fleet plans by maximizing customer satisfaction and environmental considerations. Computational results show that effective and efficient fleet plans can be produced by making use of the proposed optimization model. 相似文献