首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The concept of rescheduling is essential to activity-based modeling in order to calculate effects of both unexpected incidents and adaptation of individuals to traffic demand management measures. When collaboration between individuals is involved or timetable based public transportation modes are chosen, rescheduling becomes complex. This paper describes a new framework to investigate algorithms for rescheduling at a large scale. The framework allows to explicitly model the information flow between traffic information services and travelers. It combines macroscopic traffic assignment with microscopic simulation of agents adapting their schedules. Perception filtering is introduced to allow for traveler specific interpretation of perceived macroscopic data and for information going unnoticed; perception filters feed person specific short term predictions about the environment required for schedule adaptation. Individuals are assumed to maximize schedule utility. Initial agendas are created by the FEATHERS activity-based schedule generator for mutually independent individuals using an undisturbed loaded transportation network. The new framework allows both actor behavior and external phenomena to influence the transportation network state; individuals interpret the state changes via perception filtering and start adapting their schedules, again affecting the network via updated traffic demand. The first rescheduling mechanism that has been investigated uses marginal utility that monotonically decreases with activity duration and a monotonically converging relaxation algorithm to efficiently determine the new activity timing. The current framework implementation is aimed to support re-timing, re-location and activity re-sequencing; re-routing at the level of the individual however, requires microscopic travel simulation.  相似文献   

2.
The persistence of environmental problems in urban areas and the prospect of increasing congestion have precipitated a variety of new policies in the USA, with concomitant analytical and modeling requirements for transportation planning. This paper introduces the Sequenced Activity-Mobility Simulator (SAMS), a dynamic and integrated microsimulation forecasting system for transportation, land use and air quality, designed to overcome the deficiencies of conventional four-step travel demand forecasting systems. The proposed SAMS framework represents a departure from many of the conventional paradigms in travel demand forecasting. In particular, it aims at replicating the adaptative dynamics underlying transportation phenomena; explicitly incorporates the time-of-day dimension; represents human behavior based on the satisficing, as opposed to optimizing, principle; and endogenously forecasts socio-demographic, land use, vehicle fleet mix, and other variables that have traditionally been projected externally to be input into the forecasting process.  相似文献   

3.
Increasing concerns on environment and natural resources, coupled with increasing demand for transport, put lots of pressure for improved efficiency and performance on transport systems worldwide. New technology nowadays enables fast innovation in transport, but it is the policy for deployment and operation with a systems perspective that often determines success. Smart traffic management has played important roles for continuous development of traffic systems especially in urban areas. There is, however, still lack of effort in current traffic management and planning practice prioritizing policy goals in environment and energy. This paper presents an application of a model-based framework to quantify environmental impacts and fuel efficiency of road traffic, and to evaluate optimal signal plans with respect not only to traffic mobility performance but also other important measures for sustainability. Microscopic traffic simulator is integrated with micro-scale emission model for estimation of emissions and fuel consumption at high resolution. A stochastic optimization engine is implemented to facilitate optimal signal planning for different policy goals, including delay, stop-and-goes, fuel economy etc. In order to enhance the validity of the modeling framework, both traffic and emission models are fine-tuned using data collected in a Chinese city. In addition, two microscopic traffic models are applied, and lead to consistent results for signal optimization. Two control schemes, fixed time and vehicle actuated, are optimized while multiple performance indexes are analyzed and compared for corresponding objectives. Solutions, representing compromise between different policies, are also obtained in the case study by optimizing an integrated performance index.  相似文献   

4.
This paper presents an integrated transit-oriented travel demand modeling procedure within the framework of geographic information systems (GIS). Focusing on transit network development, this paper presents both the procedure and algorithm for automatically generating both link and line data for transit demand modeling from the conventional street network data using spatial analysis and dynamic segmentation. For this purpose, transit stop digitizing, topology and route system building, and the conversion of route and stop data into link and line data sets are performed. Using spatial analysis, such as the functionality to search arcs nearest from a given node, the nearest stops are identified along the associated links of the transit line, while the topological relation between links and line data sets can also be computed using dynamic segmentation. The advantage of this approach is that street map databases represented by a centerline can be directly used along with the existing legacy urban transportation planning systems (UTPS) type travel modeling packages and existing GIS without incurring the additional cost of purchasing a full-blown transportation GIS package. A small test network is adopted to demonstrate the process and the results. The authors anticipate that the procedure set forth in this paper will be useful to many cities and regional transit agencies in their transit demand modeling process within the integrated GIS-based computing environment.  相似文献   

5.
This paper presents an alternative planning framework to model and forecast network traffic for planning applications in small communities, where limited resources debilitate the development and applications of the conventional four-step travel demand forecasting model. The core idea is to use the Path Flow Estimator (PFE) to estimate current and forecast future traffic demand while taking into account of various field and planning data as modeling constraints. Specifically, two versions of PFE are developed: a base year PFE for estimating the current network traffic conditions using field data and planning data, if available, and a future year PFE for predicting future network traffic conditions using forecast planning data and the estimated base year origin–destination trip table as constraints. In the absence of travel survey data, the proposed method uses similar data (traffic counts and land use data) as a four-step model for model development and calibration. Since the Institute of Transportation Engineers (ITE) trip generation rates and Highway Capacity Manual (HCM) are both utilized in the modeling process, the analysis scope and results are consistent with those of common traffic impact studies and other short-range, localized transportation improvement programs. Solution algorithms are also developed to solve the two PFE models and integrated into a GIS-based software called Visual PFE. For proof of concept, two case studies in northern California are performed to demonstrate how the tool can be used in practice. The first case study is a small community of St. Helena, where the city’s planning department has neither an existing travel demand model nor the budget for developing a full four-step model. The second case study is in the city of Eureka, where there is a four-step model developed for the Humboldt County that can be used for comparison. The results show that the proposed approach is applicable for small communities with limited resources.  相似文献   

6.
This paper presents an integrated framework for effective coupling of a signal timing estimation model and dynamic traffic assignment (DTA) in feedback loops. There are many challenges in effectively integrating signal timing tools with DTA software systems, such as data availability, exchange format, and system coupling. In this research, a tight coupling between a DTA model with various queue‐based simulation models and a quick estimation method Excel‐based signal control tool is achieved and tested. The presented framework design offers an automated solution for providing realistic signal timing parameters and intersection movement capacity allocation, especially for future year scenarios. The framework was used to design an open‐source data hub for multi‐resolution modeling in analysis, modeling and simulation applications, in which a typical regional planning model can be quickly converted to microscopic traffic simulation and signal optimization models. The coupling design and feedback loops are first demonstrated on a simple network, and we examine the theoretically important questions on the number of iterations required for reaching stable solutions in feedback loops. As shown in our experiment, the current coupled application becomes stable after about 30 iterations, when the capacity and signal timing parameters can quickly converge, while DTA's route switching model predominately determines and typically requires more iterations to reach a stable condition. A real‐world work zone case study illustrates how this application can be used to assess impacts of road construction or traffic incident events that disrupt normal traffic operations and cause route switching on multiple analysis levels. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

Many urban university campuses are considered major trip attractors. Considering the multimodal and complex nature of university campus transportation planning and operation, this paper proposes a dynamic traffic simulation and assignment analysis approach and demonstrates how such a methodology can be successfully applied. Central to the research is the estimation of trip origindestinations and the calibration of a parking lot choice model. Dynamic simulation is utilized to simulate multiple modes of transportation within the transportation network while further assigning these modes with respect to various mode-specific roadway accessibilities. A multiple vehicle-class simulation analysis for planning purposes becomes a critical capability to predict how faculty and staff who once parked within the campus core choose other nearby alternate parking lots. The results highlight the effectiveness of the proposed approach in providing integrated and reliable solutions for challenging questions that face urban university campus planners and local transportation jurisdictions.  相似文献   

8.
Geographic Information Systems (GISs) are now being developed for urban transportation planning and modeling. Supporting other recent work, this paper demonstrates the combination of GIS and network-based, urban transportation planning (UTP) modeling software to create powerful tools for the analysis of policies and plans. Following a literature review and informal survey identifying GIS and UTP modeling software in use at transportation agencies, three applications of GIS for network modeling and relevant issues are discussed: 1) developing or modifying UTP models, 2) incorporating network data into a GIS framework, and 3) creating and using a high-speed interactive system suitable for providing near real-time alternatives and policy analysis. Some specific suggestions are made related to the use of two software products, and extensions to other platforms are noted. Conclusions allude to the potential of such systems while realistically pointing to the present difficulties and magnitude of effort that will be required.  相似文献   

9.
This paper develops an integrated model for reliable estimation of daily vehicle fuel savings and emissions using an integrated traffic emission modeling approach created by incorporating the US Environmental Protection Agency’s vehicle emission model, MOVES, and the PARAMICS microscopic traffic simulation package. A case study is conducted to validate the model using a well-calibrated road network in Greenville, South Carolina. For each transportation fuel considered, both emission and fuel consumption impacts are evaluated based on market shares.  相似文献   

10.
绿色交通系统对改善城市交通拥堵,减少交通能耗、环境污染,提高城市的宜居性等方面有着积极的推动作用。文章从城市规划和土地利用开发、交通需求管理、交通基础设施建设等方面阐述了城市绿色交通的建设与发展策略,为发展、建设城市绿色交通提供思路。  相似文献   

11.
Recent advances in agent-based micro-simulation modeling have further highlighted the importance of a thorough full synthetic population procedure for guaranteeing the correct characterization of real-world populations and underlying travel demands. In this regard, we propose an integrated approach including Markov Chain Monte Carlo (MCMC) simulation and profiling-based methods to capture the behavioral complexity and the great heterogeneity of agents of the true population through representative micro-samples. The population synthesis method is capable of building the joint distribution of a given population with its corresponding marginal distributions using either full or partial conditional probabilities or both of them simultaneously. In particular, the estimation of socio-demographic or transport-related variables and the characterization of daily activity-travel patterns are included within the framework. The fully probabilistic structure based on Markov Chains characterizing this framework makes it innovative compared to standard activity-based models. Moreover, data stemming from the 2010 Belgian Household Daily Travel Survey (BELDAM) are used to calibrate the modeling framework. We illustrate that this framework effectively captures the behavioral heterogeneity of travelers. Furthermore, we demonstrate that the proposed framework is adequately adapted to meeting the demand for large-scale micro-simulation scenarios of transportation and urban systems.  相似文献   

12.
A combined transportation-land use model is proposed in this paper. Unlike other existing urban land use and transportation planning models in which a “fixed demand” for services is assumed to be known at the zonal level of an urban area, zonal travel demand is endogenously determined together with link congestion costs, optimal amounts of production and resulting efficient densities of land uses, once the transportation network is given. Some characteristics of alternative solutions are demonstrated. The proposed model represents progress over previous efforts in combining land use-transportation problems since the travel choice as to origin, destination and routes as well as amounts of goods to be produced at the optimal density of land uses are integrated into a consistent mathematical programming framework.  相似文献   

13.
Conceptual and empirical models of the propensity to perform social activity–travel behavior are described, which incorporate the influence of individuals’ social context, namely their social networks. More explicitly, the conceptual model develops the concepts of egocentric social networks, social activities, and social episodes, and defines the three sets of aspects that influence the propensity to perform social activities: individuals’ personal attributes, social network composition, and information and communication technology interaction with social network members. Using the structural equation modeling (SEM) technique and data recently collected in Toronto, the empirical model tests the effect of these three aspects on the propensity to perform social activities. Results suggest that the social networks framework provides useful insights into the role of physical space, social activity types, communication and information technology use, and the importance of “with whom” the activity was performed with. Overall, explicitly incorporating social networks into the activity–travel behavior modeling framework provides a promising framework to understand social activities and key aspects of the underlying behavioral process. Juan Antonio Carrasco a PhD candidate in Civil Engineering at the University of Toronto, holds a MSc degree in Transportation Engineering from the Pontificia Universidad Católica de Chile. His doctoral research explores the relationships between social networks, activity–travel behavior, and ICTs. His research interests also include microsimulation, land use-transportation, and econometric modeling. Eric J. Miller is Bahen-Tanenbaum Professor of Civil Engineering at the University of Toronto where he is also Director of the Joint Program in Transportation. His research interests include integrated land-use/transportation modeling, activity-based travel modeling, microsimulation and sustainable transportation planning.  相似文献   

14.
With the ubiquitous nature of mobile sensing technologies, privacy issues are becoming increasingly important, and need to be carefully addressed. Data needs for transportation modeling and privacy protection should be deliberately balanced for different applications. This paper focuses on developing privacy mechanisms that would simultaneously satisfy privacy protection and data needs for fine-grained urban traffic modeling applications using mobile sensors. To accomplish this, a virtual trip lines (VTLs) zone-based system and related filtering approaches are developed. Traffic-knowledge-based adversary models are proposed and tested to evaluate the effectiveness of such a privacy protection system by making privacy attacks. The results show that in addition to ensuring an acceptable level of privacy, the released datasets from the privacy-enhancing system can also be applied to urban traffic modeling with satisfactory results. Albeit application-specific, such a “Privacy-by-Design” approach would hopefully shed some light on other transportation applications using mobile sensors.  相似文献   

15.
Transport models are used to evaluate new infrastructure and public transport services, varied levels of demand, and new ideas for demand management. Exploring these proposals virtually is easier than implementation and testing in situ. However, existing models are based around traditional forms of transportation. As part of a feature analysis using a case study approach, three different simulation packages (a simple custom-developed package, traffic microsimulation, and agent-based simulation) are used to develop and demonstrate simulations of demand-responsive transportation (DRT) and analyze the advantages and disadvantages of each simulation approach for evaluating DRT. While the simulations display some relational replication (meaning they produce similar relational patterns with respect to certain variables), they do not show distributional replication (that is, the value of the results is not statistically similar), meaning that under- or over-estimation of predicted travel could occur. Recommendations for the application of each modeling approach are made.  相似文献   

16.
Currently most optimization methods for urban transport networks (i) are suited for networks with simplified dynamics that are far from real-sized networks or (ii) apply decentralized control, which is not appropriate for heterogeneously loaded networks or (iii) investigate good-quality solutions through micro-simulation models and scenario analysis, which make the problem intractable in real time. In principle, traffic management decisions for different sub-systems of a transport network (urban, freeway) are controlled by operational rules that are network specific and independent from one traffic authority to another. In this paper, the macroscopic traffic modeling and control of a large-scale mixed transportation network consisting of a freeway and an urban network is tackled. The urban network is partitioned into two regions, each one with a well-defined Macroscopic Fundamental Diagram (MFD), i.e. a unimodal and low-scatter relationship between region density and outflow. The freeway is regarded as one alternative commuting route which has one on-ramp and one off-ramp within each urban region. The urban and freeway flow dynamics are formulated with the tool of MFD and asymmetric cell transmission model, respectively. Perimeter controllers on the border of the urban regions operating to manipulate the perimeter interflow between the two regions, and controllers at the on-ramps for ramp metering are considered to control the flow distribution in the mixed network. The optimal traffic control problem is solved by a Model Predictive Control (MPC) approach in order to minimize total delay in the entire network. Several control policies with different levels of urban-freeway control coordination are introduced and tested to scrutinize the characteristics of the proposed controllers. Numerical results demonstrate how different levels of coordination improve the performance once compared with independent control for freeway and urban network. The approach presented in this paper can be extended to implement efficient real-world control strategies for large-scale mixed traffic networks.  相似文献   

17.
18.
This paper presents analytical models that describe the safety of unstructured and layered en route airspace designs. Here, ‘unstructured airspace’ refers to airspace designs that offer operators complete freedom in path planning, whereas ‘layered airspace’ refers to airspace concepts that utilize heading-altitude rules to vertically separate cruising aircraft based on their travel directions. With a focus on the intrinsic safety provided by an airspace design, the models compute instantaneous conflict counts as a function of traffic demand and airspace design parameters, such as traffic separation requirements and the permitted heading range per flight level. While previous studies have focused primarily on conflicts between cruising aircraft, the models presented here also take into account conflicts involving climbing and descending traffic. Fast-time simulation experiments used to validate the modeling approach indicate that the models estimate instantaneous conflict counts with high accuracy for both airspace designs. The simulation results also show that climbing and descending traffic caused the majority of conflicts for layered airspaces with a narrow heading range per flight level, highlighting the importance of including all aircraft flight phases for a comprehensive safety analysis. Because such trends could be accurately predicted by the three-dimensional models derived here, these analytical models can be used as tools for airspace design applications as they provide a detailed understanding of the relationships between the parameters that influence the safety of unstructured and layered airspace designs.  相似文献   

19.
The primary shortcoming of traditional four-step models is that they cannot capture derived travel demand behaviors. However, travel demand modeling (TDM) is an essential input for urban transportation planning. TDM needs to be highly precise and accurate by integrating the accurate base year estimation along with suitable alternatives. Currently, activity-based models (ABMs) have been developed mostly for large metropolitan planning organizations (MPO), whereas smaller/medium-sized MPOs typically lack these models. The main reason for this disparity in ABM development is the complexity of the models and the cost and data requirements needed. We posit however that smaller MPOs could develop ABMs from traditional travel surveys. Therefore, the specific aim of this paper is to develop a probabilistic home-based destination activity trip generation model considering travel time behavior. Results show that the developed model can significantly capture the actual number of trip generations.  相似文献   

20.
Abstract

In this paper, we present a dynamic traffic assignment-simulation modeling framework (DYNASMART-P) to support the evaluation and planning of Bus Rapid Transit (BRT) services in urban transportation networks. The model represents the different characteristics associated with BRT operations such as: exclusive right-of-way lanes, limited-stop service, signal prioritization at congested intersections, and enhanced bus stops to reduce passenger boarding times. A set of simulation experiments is conducted using the model to study the impact of introducing a hypothetical BRT service in the Knoxville area in the State of Tennessee. In these experiments, the different operational characteristics of BRT are evaluated in terms of potential impact on transit ridership and on the interacting auto traffic. The results illustrate the advantages of BRT for increasing transit ridership and improving overall system performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号