首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
This paper focuses on modeling agents’ en-route diversion behavior under information provision. The behavior model is estimated based on naïve Bayes rules and re-calibrated using a Bayesian approach. Stated-preference driving simulator data is employed for model estimation. Bluetooth-based field data is employed for re-calibration. Then the behavior model is integrated with a simulation-based dynamic traffic assignment model. A traffic incident scenario along with variable message signs (VMS) is designed and analyzed under the context of a real-world large-scale transportation network to demonstrate the integrated model and the impact of drivers’ dynamic en-route diversion behavior on network performance. Macroscopic Fundamental Diagram (MFD) is employed as a measurement to represent traffic dynamics. This research has quantitatively evaluated the impact of information provision and en-route diversion in a VMS case study. It proposes and demonstrates an original, complete, behaviorally sound, and cost-effective modeling framework for potential analyses and evaluations related to Advanced Traffic Information System (ATIS) and real-time operational applications.  相似文献   

2.
    
A number of approaches have been developed to evaluate the impact of land development on transportation infrastructure. While traditional approaches are either limited to static modeling of traffic performance or lack a strong travel behavior foundation, today’s advanced computational technology makes it feasible to model an individual traveler’s response to land development. This study integrates dynamic traffic assignment (DTA) with a positive agent-based microsimulation travel behavior model for cumulative land development impact studies. The integrated model not only enhances the behavioral implementation of DTA, but also captures traffic dynamics. It provides an advanced yet practical approach to understanding the impact of a single or series of land development projects on an individual driver’s behavior, as well as the aggregated impacts on the demand pattern and time-dependent traffic conditions. A simulation-based optimization (SBO) approach is proposed for the calibration of the modeling system. The SBO calibration approach enhances the transferability of this integrated model to other study areas. Using a case study that focuses on the cumulative land development impact along a congested corridor in Maryland, various regional and local travel behavior changes are discussed to show the capability of this tool for behavior side estimations and the corresponding traffic impacts.  相似文献   

3.
    
The advancement of information and communication technology allows the use of more sophisticated information provision strategies for real-time congested traffic management in a congested network. This paper proposes an agent-based optimization modeling framework to provide personalized traffic information for heterogeneous travelers. Based on a space–time network, a time-dependent link flow based integer programming model is first formulated to optimize various information strategies, including elements of where and when to provide the information, to whom the information is given, and what alternative route information should be suggested. The analytical model can be solved efficiently using off-the-shelf commercial solvers for small-scale network. A Lagrangian Relaxation-based heuristic solution approach is developed for medium to large networks via the use of a mesoscopic dynamic traffic simulator.  相似文献   

4.
    
The recently emerging trend of self-driving vehicles and information sharing technologies, made available by private technology vendors, starts creating a revolutionary paradigm shift in the coming years for traveler mobility applications. By considering a deterministic traveler decision making framework at the household level in congested transportation networks, this paper aims to address the challenges of how to optimally schedule individuals’ daily travel patterns under the complex activity constraints and interactions. We reformulate two special cases of household activity pattern problem (HAPP) through a high-dimensional network construct, and offer a systematic comparison with the classical mathematical programming models proposed by Recker (1995). Furthermore, we consider the tight road capacity constraint as another special case of HAPP to model complex interactions between multiple household activity scheduling decisions, and this attempt offers another household-based framework for linking activity-based model (ABM) and dynamic traffic assignment (DTA) tools. Through embedding temporal and spatial relations among household members, vehicles and mandatory/optional activities in an integrated space-time-state network, we develop two 0–1 integer linear programming models that can seamlessly incorporate constraints for a number of key decisions related to vehicle selection, activity performing and ridesharing patterns under congested networks. The well-structured network models can be directly solved by standard optimization solvers, and further converted to a set of time-dependent state-dependent least cost path-finding problems through Lagrangian relaxation, which permit the use of computationally efficient algorithms on large-scale high-fidelity transportation networks.  相似文献   

5.
In this paper we develop and explore an approach to estimate dynamic models of activity generation on one-day travel-diary data. Dynamic models predict multi-day activity patterns of individuals taking into account dynamic needs as well as day-varying preferences and time-budgets. We formulate an ordered-logit model of dynamic activity-agenda-formation decisions and show how one-day observation probabilities can be derived from the model as a function of the model’s parameters and, with that, how parameters can be estimated using standard loglikelihood estimation. A scale parameter cannot be identified because information on within-person variability is lacking in one-day data. An application of the method to data from a national travel survey illustrates the method. A test on simulated data indicates that, given a pre-set scale, the parameters can be identified and that estimates are robust for a source of heterogeneity not captured in the model. This result indicates that dynamic activity-based models of the kind considered here can be estimated from data that are less costly to collect and that support the large sample sizes typically required for travel-demand modeling. We conclude therefore that the proposed approach opens up a way to develop large-scale dynamic activity-based models of travel demand.  相似文献   

6.
    
Node models for macroscopic simulation have attracted relatively little attention in the literature. Nevertheless, in dynamic network loading (DNL) models for congested road networks, node models are as important as the extensively studied link models. This paper provides an overview of macroscopic node models found in the literature, explaining both their contributions and shortcomings. A formulation defining a generic class of first order macroscopic node models is presented, satisfying a list of requirements necessary to produce node models with realistic, consistent results. Defining a specific node model instance of this class requires the specification of a supply constraint interaction rule and (optionally) node supply constraints. Following this theoretical discussion, specific macroscopic node model instances for unsignalized and signalized intersections are proposed. These models apply an oriented capacity proportional distribution of the available supply over the incoming links of a node. A computationally efficient algorithm to solve the node models exactly is included.  相似文献   

7.
    
In this paper, we present an approach for determining dynamic user equilibria. The method is suitable for disaggregated microscopic and mesoscopic simulation-based models. It is a modification of the convex-simplex method, which disposes with the line search step, and controls the subset of travelers to be re-routed at each step while updating the link travel times after each assignment. To guarantee finite termination, a suitable stopping criterion is adopted. The proposed method is implemented within TRANSIMS, the Transportation Analysis and Simulation System, as a two-stage process that employs a combined use of link performance functions and a microsimulator in order to design a framework suitable for application to real transportation systems. To demonstrate this capability, we apply the developed methodology to a large-scale network, Bignet, which is part of the transportation city network of Portland, Oregon; and a medium-scale network, Blacksburg, Virginia; and provide some comparative analyses. Our results exhibit that an improved distribution of travelers is obtained while consuming less than 17–33% of the effort required by the current version of TRANSIMS.  相似文献   

8.
This study provides an example in which the dynamic user equilibrium (DUE) assignment of a congested road network with bottlenecks is non-unique. In previous studies, the uniqueness of DUE assignments with the bottleneck model has been shown in limited cases such as single-origin and single-destination networks. Consequently, it is still an important issue whether or not uniqueness is a general property of DUE assignments. The present study describes a network in which multiple patterns of link travel time are found, thus providing a negative answer to this question. The network has a loopy structure with multiple bottlenecks and multiple origin-destination (OD) pairs. Given a certain demand pattern of departure times for vehicles leaving their origins, a non-convex set of equilibria with a non-unique pattern of link travel times is shown to exist.  相似文献   

9.
In this paper, we propose a link-node complementarity model for the basic deterministic dynamic user equilibrium (DUE) problem with single-user-class and fixed demands. The model complements link-path formulations that have been widely studied for dynamic user equilibria. Under various dynamic network constraints, especially the exact flow propagation constraints, we show that the continuous-time dynamic user equilibrium problem can be formulated as an infinite dimensional mixed complementarity model. The continuous-time model can be further discretized as a finite dimensional non-linear complementarity problem (NCP). The proposed discrete-time model captures the exact flow propagation constraints that were usually approximated in previous studies. By associating link inflow at the beginning of a time interval to travel times at the end of the interval, the resulting discrete-time model is predictive rather than reactive. The solution existence and compactness condition for the proposed model is established under mild assumptions. The model is solved by an iterative algorithm with a relaxed NCP solved at each iteration. Numerical examples are provided to illustrate the proposed model and solution approach. We particularly show why predictive DUE is preferable to reactive DUE from an algorithmic perspective.  相似文献   

10.
A dynamic traffic assignment (DTA) model typically consists of a traffic performance model and a route choice model. The traffic performance model describes how traffic propagates (over time) along routes connecting origin-destination (OD) pairs, examples being the cell transmission model, the vertical queueing model and the travel time model. This is implemented in a dynamic network loading (DNL) algorithm, which uses the given route inflows to compute the link inflows (and hence link costs), which are then used to compute the route travel times (and hence route costs). A route swap process specifies the route inflows for tomorrow (at the next iteration) based on the route inflows today (at the current iteration). A dynamic user equilibrium (DUE), where each traveller on the network cannot reduce his or her cost of travel by switching to another route, can be sought by iterating between the DNL algorithm and the route swap process. The route swap process itself takes up very little computational time (although route set generation can be very computationally intensive for large networks). However, the choice of route swap process dramatically affects convergence and the speed of convergence. The paper details several route swap processes and considers whether they lead to a convergent system, assuming that the route cost vector is a monotone function of the route inflow vector.  相似文献   

11.
    
Foresee traffic conditions and demand is a major issue nowadays that is very often approached using simulation tools. The aim of this work is to propose an innovative strategy to tackle such problem, relying on the presentation and analysis of a behavioural dynamic traffic assignment.The proposal relies on the assumption that travellers take routing policies rather than paths, leading us to introduce the possibility for each simulated agent to apply, in real time, a strategy allowing him to possibly re-route his path depending on the perceived local traffic conditions, jam and/or time already spent in his journey.The re-routing process allows the agents to directly react to any change in the road network. For the sake of simplicity, the agents’ strategy is modelled with a simple neural network whose parameters are determined during a preliminary training stage. The inputs of such neural network read the local information about the route network and the output gives the action to undertake: stay on the same path or modify it. As the agents use only local information, the overall network topology does not really matter, thus the strategy is able to cope with large and not previously explored networks.Numerical experiments are performed on various scenarios containing different proportions of trained strategic agents, agents with random strategies and non strategic agents, to test the robustness and adaptability to new environments and varying network conditions. The methodology is also compared against existing approaches and real world data. The outcome of the experiments suggest that this work-in-progress already produces encouraging results in terms of accuracy and computational efficiency. This indicates that the proposed approach has the potential to provide better tools to investigate and forecast drivers’ choice behaviours. Eventually these tools can improve the delivery and efficiency of traffic information to the drivers.  相似文献   

12.
    
Autonomous vehicles admit consideration of novel traffic behaviors such as reservation-based intersection controls and dynamic lane reversal. We present a cell transmission model formulation for dynamic lane reversal. For deterministic demand, we formulate the dynamic lane reversal control problem for a single link as an integer program and derive theoretical results. In reality, demand is not known perfectly at arbitrary times in the future. To address stochastic demand, we present a Markov decision process formulation. Due to the large state size, the Markov decision process is intractable. However, based on theoretical results from the integer program, we derive an effective heuristic. We demonstrate significant improvements over a fixed lane configuration both on a single bottleneck link with varying demands, and on the downtown Austin network.  相似文献   

13.
    
This paper presents a computationally efficient and theoretically rigorous dynamic traffic assignment (DTA) model and its solution algorithm for a number of emerging emissions and fuel consumption related applications that require both effective microscopic and macroscopic traffic stream representations. The proposed model embeds a consistent cross-resolution traffic state representation based on Newell’s simplified kinematic wave and linear car following models. Tightly coupled with a computationally efficient emission estimation package MOVES Lite, a mesoscopic simulation-based dynamic network loading framework DTALite is adapted to evaluate traffic dynamics and vehicle emission/fuel consumption impact of different traffic management strategies.  相似文献   

14.
Consider a city with several highly compact central business districts (CBD), and the commuters’ destinations from each of them are dispersed over the whole city. Since at a particular location inside the city the traffic movements from different CBDs share the same space and do not cancel out each other as in conventional fluid flow problems albeit travelling in different directions, the traffic flows from a CBD to the destinations over the city are considered as one commodity. The interaction of the traffic flows among different commodities is governed by a cost–flow relationship. The case of variable demand is considered. The primal formulation of the continuum equilibrium model is given and proved to satisfy the user optimal conditions, and the dual formulation of the problem and its complementary conditions are also discussed. A finite element method is then employed to solve the continuum problem. A numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

15.
    
The optimization of traffic signalization in urban areas is formulated as a problem of finding the cycle length, the green times and the offset of traffic signals that minimize an objective function of performance indices. Typical approaches to this optimization problem include the maximization of traffic throughput or the minimization of vehicles’ delays, number of stops, fuel consumption, etc. Dynamic Traffic Assignment (DTA) models are widely used for online and offline applications for efficient deployment of traffic control strategies and the evaluation of traffic management schemes and policies. We propose an optimization method for combining dynamic traffic assignment and network control by minimizing the risk of potential loss induced to travelers by exceeding their budgeted travel time as a result of deployed traffic signal settings, using the Conditional Value-at-Risk model. The proposed methodology can be easily implemented by researchers or practitioners to evaluate their alternative strategies and aid them to choose the alternative with less potential risk. The traffic signal optimization procedure is implemented in TRANSYT-7F and the dynamic propagation and route choice of vehicles is simulated with a mesoscopic dynamic traffic assignment tool (DTALite) with fixed temporal demand and network characteristics. The proposed approach is applied to a reference test network used by many researchers for verification purposes. Numerical experiments provide evidence of the advantages of this optimization method with respect to conventional optimization techniques. The overall benefit to the performance of the network is evaluated with a Conditional Value-at-Risk Analysis where the optimal solution is the one presenting the least risk for ‘guaranteed’ total travel times.  相似文献   

16.
In this paper, a dynamic user equilibrium traffic assignment model with simultaneous departure time/route choices and elastic demands is formulated as an arc-based nonlinear complementarity problem on congested traffic networks. The four objectives of this paper are (1) to develop an arc-based formulation which obviates the use of path-specific variables, (2) to establish existence of a dynamic user equilibrium solution to the model using Brouwer's fixed-point theorem, (3) to show that the vectors of total arc inflows and associated minimum unit travel costs are unique by imposing strict monotonicity conditions on the arc travel cost and demand functions along with a smoothness condition on the equilibria, and (4) to develop a heuristic algorithm that requires neither a path enumeration nor a storage of path-specific flow and cost information. Computational results are presented for a simple test network with 4 arcs, 3 nodes, and 2 origin–destination pairs over the time interval of 120 periods.  相似文献   

17.
    
Reservation-based intersection control is a revolutionary idea for using connected autonomous vehicle technologies to improve intersection controls. Vehicles individually request permission to follow precise paths through the intersection at specific times from an intersection manager agent. Previous studies have shown that reservations can reduce delays beyond optimized signals in many demand scenarios. The purpose of this paper is to demonstrate that signals can outperform reservations through theoretical and realistic examples. We present two examples that exploit the reservation protocol to prioritize vehicles on local roads over vehicles on arterials, increasing the total vehicle delay. A third theoretical example demonstrates that reservations can encourage selfish route choice leading to arbitrarily large queues. Next, we present two realistic networks taken from metropolitan planning organization data in which reservations perform worse than signals. We conclude with significantly positive results from comparing reservations and signals on the downtown Austin grid network using dynamic traffic assignment. Overall, these results indicate that network-based analyses are needed to detect adverse route choices before traffic signals can be replaced with reservation controls. In asymmetric intersections (e.g. local road-arterial intersections), reservation controls can cause several potential issues. However, in networks with more symmetric intersections such as a downtown grid, reservations have great potential to improve traffic.  相似文献   

18.
This paper proposes a methodology to generate a robust logistics plan that can mitigate demand uncertainty in humanitarian relief supply chains. More specifically, we apply robust optimization (RO) for dynamically assigning emergency response and evacuation traffic flow problems with time dependent demand uncertainty. This paper studies a Cell Transmission Model (CTM) based system optimum dynamic traffic assignment model. We adopt a min–max criterion and apply an extension of the RO method adjusted to dynamic optimization problems, an affinely adjustable robust counterpart (AARC) approach. Simulation experiments show that the AARC solution provides excellent results when compared to deterministic solution and sampling based stochastic programming solution. General insights of RO and transportation that may have wider applicability in humanitarian relief supply chains are provided.  相似文献   

19.
    
The development and calibration of complex traffic models demands parsimonious techniques, because such models often involve hundreds of thousands of unknown parameters. The Weighted Simultaneous Perturbation Stochastic Approximation (W-SPSA) algorithm has been proven more efficient than its predecessor SPSA (Spall, 1998), particularly in situations where the correlation structure of the variables is not homogeneous. This is crucial in traffic simulation models where effectively some variables (e.g. readings from certain sensors) are strongly correlated, both in time and space, with some other variables (e.g. certain OD flows). In situations with reasonably sized traffic networks, the difference is relevant considering computational constraints. However, W-SPSA relies on determining a proper weight matrix (W) that represents those correlations, and such a process has been so far an open problem, and only heuristic approaches to obtain it have been considered.This paper presents W-SPSA in a formally comprehensive way, where effectively SPSA becomes an instance of W-SPSA, and explores alternative approaches for determining the matrix W. We demonstrate that, relying on a few simplifications that marginally affect the final solution, we can obtain W matrices that considerably outperform SPSA. We analyse the performance of our proposed algorithm in two applications in motorway networks in Singapore and Portugal, using a dynamic traffic assignment model and a microscopic traffic simulator, respectively.  相似文献   

20.
    
We study the shared autonomous vehicle (SAV) routing problem while considering congestion. SAVs essentially provide a dial-a-ride service to travelers, but the large number of vehicles involved (tens of thousands of SAVs to replace personal vehicles) results in SAV routing causing significant congestion. We combine the dial-a-ride service constraints with the linear program for system optimal dynamic traffic assignment, resulting in a congestion-aware formulation of the SAV routing problem. Traffic flow is modeled through the link transmission model, an approximate solution to the kinematic wave theory of traffic flow. SAVs interact with travelers at origins and destinations. Due to the large number of vehicles involved, we use a continuous approximation of flow to formulate a linear program. Optimal solutions demonstrate that peak hour demand is likely to have greater waiting and in-vehicle travel times than off-peak demand due to congestion. SAV travel times were only slightly greater than system optimal personal vehicle route choice. In addition, solutions can determine the optimal fleet size to minimize congestion or maximize service.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号