首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A promising framework that describes traffic conditions in urban networks is the macroscopic fundamental diagram (MFD), relating average flow and average density in a relatively homogeneous urban network. It has been shown that the MFD can be used, for example, for traffic access control. However, an implementation requires an accurate estimation of the MFD with the available data sources.Most scientific literature has considered the estimation of MFDs based on either loop detector data (LDD) or floating car data (FCD). In this paper, however, we propose a methodology for estimating the MFD based on both data sources simultaneously. To that end, we have defined a fusion algorithm that separates the urban network into two sub-networks, one with loop detectors and one without. The LDD and the FCD are then fused taking into account the accuracy and network coverage of each data type. Simulations of an abstract grid network and the network of the city of Zurich show that the fusion algorithm always reduces the estimation error significantly with respect to an estimation where only one data source is used. This holds true, even when we account for the fact that the probe penetration rate of FCD needs to be estimated with loop detectors, hence it might also include some errors depending on the number of loop detectors, especially when probe vehicles are not homogeneously distributed within the network.  相似文献   

2.
A field experiment in Yokohama (Japan) revealed that a macroscopic fundamental diagram (MFD) linking space-mean flow, density and speed exists on a large urban area. It was observed that when the highly scattered plots of flow vs. density from individual fixed detectors were aggregated the scatter nearly disappeared and points grouped along a well defined curve. Despite these and other recent findings for the existence of well-defined MFDs for urban areas, these MFDs should not be universally expected. In this paper we investigate what are the properties that a network should satisfy, so that an MFD with low scatter exists. We show that the spatial distribution of vehicle density in the network is one of the key components that affect the scatter of an MFD and its shape. We also propose an analytical derivation of the spatial distribution of congestion that considers correlation between adjacent links. We investigate the scatter of an MFD in terms of errors in the probability density function of spatial link occupancy and errors of individual links’ fundamental diagram (FD). Later, using real data from detectors for an urban arterial and a freeway network we validate the proposed derivations and we show that an MFD is not well defined in freeway networks as hysteresis effects are present. The datasets in this paper consist of flow and occupancy measures from 500 fixed sensors in the Yokohama downtown area in Japan and 600 loop detectors in the Twin Cities Metropolitan Area Freeway network in Minnesota, USA.  相似文献   

3.
Origin-destination (OD) pattern estimation is a vital step for traffic simulation applications and active urban traffic management. Many methods have been proposed to estimate OD patterns based on different data sources, such as GPS data and automatic license plate recognition (ALPR) data. These data can be used to identify vehicle IDs and estimate their trajectories by matching vehicles identified by different sensors across the network. OD pattern estimation using ALPR data remains a challenge in real-life applications due to the difficulty in reconstructing vehicle trajectories. This paper proposes an offline method for historical OD pattern estimation based on ALPR data. A particle filter is used to estimate the probability of a vehicle’s trajectory from all possible candidate trajectories. The initial particles are generated by searching potential paths in a pre-determined area based on the time geography theory. Then, the path flow estimation process is conducted through dividing the reconstructed complete trajectories of all detected vehicles into multiple trips. Finally, the OD patterns are estimated by adding up the path flows with the same ODs. The proposed method was implemented on a real-world traffic network in Kunshan, China and verified through a calibrated microscopic traffic simulation model. The results show that the MAPEs of the OD estimation are lower than 19%. Further investigation shows that there exists a minimum required ALPR sampling rate (60% in the test network) for accurately estimating the OD patterns. The findings of this study demonstrate the effectiveness of the proposed method in OD pattern estimation.  相似文献   

4.
In this paper, stability analysis of traffic control for two-region urban cities is treated. It is known in control theory that optimality does not imply stability. If the optimal control is applied in a heavily congested system with high demand, traffic conditions might not change or the network might still lead to gridlock. A city partitioned in two regions with a Macroscopic Fundamental Diagram (MFD) for each of the regions is considered. Under the assumption of triangular MFDs, the two-region MFDs system is modeled as a piecewise second-order system. Necessary and sufficient conditions are derived for stable equilibrium accumulations in the undersaturated regimes for both MFDs. Moreover, the traffic perimeter control problem for the two-region MFDs system is formulated. Phase portraits and stability analysis are conducted, and a new algorithm is proposed to derive the boundaries of the stable and unstable regions. Based on these regions, a state-feedback control strategy is derived. Trapezoidal shape of MFDs are also addressed with numerical solutions.  相似文献   

5.
Aggregated network level modeling and control of traffic in urban networks have recently gained a lot of interest due to unpredictability of travel behaviors and high complexity of physical modeling in microscopic level. Recent research has shown the existence of well-defined Macroscopic Fundamental Diagrams (MFDs) relating average flow and density in homogeneous networks. The concept of MFD allows to design real-time traffic control schemes specifically hierarchical perimeter control approaches to alleviate or postpone congestion. Considering the fact that congestion is spatially correlated in adjacent roads and it propagates spatiotemporaly with finite speed, describing the main pockets of congestion in a heterogeneous city with small number of clusters is conceivable. In this paper, we propose a three-step clustering algorithm to partition heterogeneous networks into connected homogeneous regions, which makes the application of perimeter control feasible. The advantages of the proposed method compared to the existing ones are the ability of finding directional congestion within a cluster, robustness with respect to parameters calibration, and its good performance for networks with low connectivity and missing data. Firstly, we start to find a connected homogeneous area around each road of the network in an iterative way (i.e. it forms a sequence of roads). Each sequence of roads, defined as ‘snake’, is built by starting from a single road and iteratively adding one adjacent road based on its similarity to join previously added roads in that sequence. Secondly, based on the obtained sequences from the first step, a similarity measure is defined between each pair of the roads in the network. The similarities are computed in a way that put more weight on neighboring roads and facilitate connectivity of the clusters. Finally, Symmetric Non-negative Matrix Factorization (SNMF) framework is utilized to assign roads to proper clusters with high intra-similarity and low inter-similarity. SNMF partitions the data by providing a lower rank approximation of the similarity matrix. The proposed clustering framework is applied in medium and large-size networks based on micro-simulation and empirical data from probe vehicles. In addition, the extension of the algorithm is proposed to deal with the networks with sparse measurements where information of some links is missing. The results show the effectiveness and robustness of the extended algorithm applied to simulated network under different penetration rates (percentage of links with data).  相似文献   

6.
Real traffic data and simulation analysis reveal that for some urban networks a well-defined Macroscopic Fundamental Diagram (MFD) exists, which provides a unimodal and low-scatter relationship between the network vehicle density and outflow. Recent studies demonstrate that link density heterogeneity plays a significant role in the shape and scatter level of MFD and can cause hysteresis loops that influence the network performance. Evidently, a more homogeneous network in terms of link density can result in higher network outflow, which implies a network performance improvement. In this article, we introduce two aggregated models, region- and subregion-based MFDs, to study the dynamics of heterogeneity and how they can affect the accuracy scatter and hysteresis of a multi-subregion MFD model. We also introduce a hierarchical perimeter flow control problem by integrating the MFD heterogeneous modeling. The perimeter flow controllers operate on the border between urban regions, and manipulate the percentages of flows that transfer between the regions such that the network delay is minimized and the distribution of congestion is more homogeneous. The first level of the hierarchical control problem can be solved by a model predictive control approach, where the prediction model is the aggregated parsimonious region-based MFD and the plant (reality) is formulated by the subregion-based MFDs, which is a more detailed model. At the lower level, a feedback controller of the hierarchical structure, tries to maximize the outflow of critical regions, by increasing their homogeneity. With inputs that can be observed with existing monitoring techniques and without the need for detailed traffic state information, the proposed framework succeeds to increase network flows and decrease the hysteresis loop of the MFD. Comparison with existing perimeter controllers without considering the more advanced heterogeneity modeling of MFD highlights the importance of such approach for traffic modeling and control.  相似文献   

7.
Using a stochastic cellular automaton model for urban traffic flow, we study and compare Macroscopic Fundamental Diagrams (MFDs) of arterial road networks governed by different types of adaptive traffic signal systems, under various boundary conditions. In particular, we simulate realistic signal systems that include signal linking and adaptive cycle times, and compare their performance against a highly adaptive system of self-organizing traffic signals which is designed to uniformly distribute the network density. We find that for networks with time-independent boundary conditions, well-defined stationary MFDs are observed, whose shape depends on the particular signal system used, and also on the level of heterogeneity in the system. We find that the spatial heterogeneity of both density and flow provide important indicators of network performance. We also study networks with time-dependent boundary conditions, containing morning and afternoon peaks. In this case, intricate hysteresis loops are observed in the MFDs which are strongly correlated with the density heterogeneity. Our results show that the MFD of the self-organizing traffic signals lies above the MFD for the realistic systems, suggesting that by adaptively homogenizing the network density, overall better performance and higher capacity can be achieved.  相似文献   

8.
As mobile traffic sensor technology gets more attention, mathematical models are being developed that utilize this new data type in various intelligent transportation systems applications. This study introduces simple analytical estimation models for queue lengths from tracked or probe vehicles at traffic signals using stochastic modeling approach. Developed models estimate cycle-to-cycle queue lengths by using primary parameters such as arrival rate, probe vehicle proportions, and signal phase durations. Valuable probability distributions and moment generating functions for probe information types are formulated. Fully analytical closed-form expressions are given for the case ignoring the overflow queue and approximation models are presented for the overflow case. Derived models are compared with the results from VISSIM-microscopic simulation. Analytical steady-state and cycle-to-cycle estimation errors are also derived. Numerical examples are shown for the errors of these estimators that change with probe vehicle market penetration levels, arrival rates, and volume-to-capacity ratios.  相似文献   

9.
Perimeter control based on the Macroscopic Fundamental Diagram (MFD) is widely developed for alleviating or postponing congestion in a protected region. Recent studies reveal that traffic conditions might not be improved if the perimeter control strategies are applied to unstable systems where high demand generates heavy and heterogeneously distributed traffic congestion. Therefore, considering stability of the targeted traffic system is essential, for the sake of developing a feasible and then optimal control strategy. This paper sheds light on this direction. It integrates a stability characterization algorithm of MFD system equations into the Model Predictive Control (MPC) scheme, and features respectively an upper and a lower bound of the feasible control inputs, to guarantee system stability. Firstly, the dynamics of traffic heterogeneity and its effect on the MFD are analyzed, using real data from Guangzhou in China. Piecewise affine functions of average flow are proposed to capture traffic heterogeneity in both regional and subregional MFDs. Secondly, stability of a three-state two-region system is investigated via stable equilibrium and surface boundaries analysis. Finally, a three-layer hierarchical control strategy is introduced for the studied two-region heterogeneous urban networks. The first layer of the controller calculates the stable surface boundaries for the given traffic demands and then determines the bounds of control input (split rate). An MPC approach in the second layer is used to solve an optimization problem with two objectives of minimizing total network delay and maximizing network throughput. Heterogeneity among the subregions is minimized in the last layer by implementing simultaneously a subregional perimeter flow control and an internal flow control. The effectiveness and stability of the proposed control approach are verified by comparison with four existing perimeter control strategies.  相似文献   

10.
This paper proposes a novel approach to integrate optimal control of perimeter intersections (i.e. to minimize local delay) into the perimeter control scheme (i.e. to optimize traffic performance at the network level). This is a complex control problem rarely explored in the literature. In particular, modeling the interaction between the network level control and the local level control has not been fully considered. Utilizing the Macroscopic Fundamental Diagram (MFD) as the traffic performance indicator, we formulate a dynamic system model, and design a Model Predictive Control (MPC) based controller coupling two competing control objectives and optimizing the performance at the local and the network level as a whole. To solve this highly non-linear optimization problem, we employ an approximation framework, enabling the optimal solution of this large-scale problem to be feasible and efficient. Numerical analysis shows that by applying the proposed controller, the protected network can operate around the desired state as expressed by the MFD, while the total delay at the perimeter is minimized as well. Moreover, the paper sheds light on the robustness of the proposed controller. This multi-scale hybrid controller is further extended to a stochastic MPC scheme, where connected vehicles (CV) serve as the only data source. Hence, low penetration rates of CVs lead to strong noises in the controller. This is a first attempt to develop a network-level traffic control methodology by using the emerging CV technology. We consider the stochasticity in traffic state estimation and the shape of the MFD. Simulation analysis demonstrates the robustness of the proposed stochastic controller, showing that efficient controllers can indeed be designed with this newly-spread vehicle technology even in the absence of other data collection schemes (e.g. loop detectors).  相似文献   

11.
The state of the practice traffic signal control strategies mainly rely on infrastructure based vehicle detector data as the input for the control logic. The infrastructure based detectors are generally point detectors which cannot directly provide measurement of vehicle location and speed. With the advances in wireless communication technology, vehicles are able to communicate with each other and with the infrastructure in the emerging connected vehicle system. Data collected from connected vehicles provides a much more complete picture of the traffic states near an intersection and can be utilized for signal control. This paper presents a real-time adaptive signal phase allocation algorithm using connected vehicle data. The proposed algorithm optimizes the phase sequence and duration by solving a two-level optimization problem. Two objective functions are considered: minimization of total vehicle delay and minimization of queue length. Due to the low penetration rate of the connected vehicles, an algorithm that estimates the states of unequipped vehicle based on connected vehicle data is developed to construct a complete arrival table for the phase allocation algorithm. A real-world intersection is modeled in VISSIM to validate the algorithms. Results with a variety of connected vehicle market penetration rates and demand levels are compared to well-tuned fully actuated control. In general, the proposed control algorithm outperforms actuated control by reducing total delay by as much as 16.33% in a high penetration rate case and similar delay in a low penetration rate case. Different objective functions result in different behaviors of signal timing. The minimization of total vehicle delay usually generates lower total vehicle delay, while minimization of queue length serves all phases in a more balanced way.  相似文献   

12.
In this paper, we macroscopically describe the traffic dynamics in heterogeneous transportation urban networks by utilizing the Macroscopic Fundamental Diagram (MFD), a widely observed relation between network-wide space-mean flow and density of vehicles. A generic mathematical model for multi-reservoir networks with well-defined MFDs for each reservoir is presented first. Then, two modeling variations lead to two alternative optimal control methodologies for the design of perimeter and boundary flow control strategies that aim at distributing the accumulation in each reservoir as homogeneously as possible, and maintaining the rate of vehicles that are allowed to enter each reservoir around a desired point, while the system’s throughput is maximized. Based on the two control methodologies, perimeter and boundary control actions may be computed in real-time through a linear multivariable feedback regulator or a linear multivariable integral feedback regulator. Perimeter control occurs at the periphery of the network while boundary control occurs at the inter-transfers between neighborhood reservoirs. To this end, the heterogeneous network of San Francisco is partitioned into three homogeneous reservoirs and the proposed feedback regulators are compared with a pre-timed signal plan and a single-reservoir perimeter control strategy. Finally, the impact of the perimeter and boundary control actions is demonstrated via simulation by the use of the corresponding MFDs and other performance measures. A key advantage of the proposed approach is that it does not require high computational effort and future demand data if the current state of each reservoir can be observed with loop detector data.  相似文献   

13.
Traffic is multi-modal in most cities. However, the impacts of different transport modes on traffic performance and on each other are unclear – especially at the network level. The recent extension of the macroscopic fundamental diagram (MFD) into the 3D-MFD offers a novel framework to address this gap at the urban scale. The 3D-MFD relates the network accumulation of cars and public transport vehicles to the network travel production, for either vehicles or passengers. No empirical 3D-MFD has been reported so far.In this paper, we present the first empirical estimate of a 3D-MFD at the urban scale. To this end, we use data from loop detectors and automatic vehicle location devices (AVL) of the public transport vehicles in the city of Zurich, Switzerland. We compare two different areas within the city, that differ in their topology and share of dedicated lanes for public transport. We propose a statistical model of the 3D-MFD, which estimates the effects of the vehicle accumulation on car and public transport speeds under multi-modal traffic conditions. The results quantify the effects of both, vehicles and passengers, and confirm that a greater share of dedicated lanes reduces the marginal effects of public transport vehicles on car speeds. Lastly, we derive a new application of the 3D-MFD by identifying the share of public transport users that maximizes the journey speeds in an urban network accounting for all motorized transport modes.  相似文献   

14.
Recently connected vehicle (CV) technology has received significant attention thanks to active pilot deployments supported by the US Department of Transportation (USDOT). At signalized intersections, CVs may serve as mobile sensors, providing opportunities of reducing dependencies on conventional vehicle detectors for signal operation. However, most of the existing studies mainly focus on scenarios that penetration rates of CVs reach certain level, e.g., 25%, which may not be feasible in the near future. How to utilize data from a small number of CVs to improve traffic signal operation remains an open question. In this work, we develop an approach to estimate traffic volume, a key input to many signal optimization algorithms, using GPS trajectory data from CV or navigation devices under low market penetration rates. To estimate traffic volumes, we model vehicle arrivals at signalized intersections as a time-dependent Poisson process, which can account for signal coordination. The estimation problem is formulated as a maximum likelihood problem given multiple observed trajectories from CVs approaching to the intersection. An expectation maximization (EM) procedure is derived to solve the estimation problem. Two case studies were conducted to validate our estimation algorithm. One uses the CV data from the Safety Pilot Model Deployment (SPMD) project, in which around 2800 CVs were deployed in the City of Ann Arbor, MI. The other uses vehicle trajectory data from users of a commercial navigation service in China. Mean absolute percentage error (MAPE) of the estimation is found to be 9–12%, based on benchmark data manually collected and data from loop detectors. Considering the existing scale of CV deployments, the proposed approach could be of significant help to traffic management agencies for evaluating and operating traffic signals, paving the way of using CVs for detector-free signal operation in the future.  相似文献   

15.
This paper aims to cross-compare existing estimation methods for the Macroscopic Fundamental Diagram. Raw data are provided by a mesoscopic simulation tool for two typical networks that mimic an urban corridor and a meshed urban center. We mainly focus on homogenous network loading in order to fairly cross-compare the different methods with the analytical reference. It appears that the only way to estimate the MFD without bias is to have the full information of vehicle trajectories over the network and to apply Edie’s definitions. Combining information from probes (mean network speed) and loop detectors (mean network flow) also provides accurate results even for low sampling rate (<10%). Loop detectors fail to provide a good estimation for mean network speed or density because they cannot capture the traffic spatial dynamics over links. This paper proposes a simple adjustment technic in order to reduce the discrepancy when only loop detectors are available.  相似文献   

16.
The Connected Vehicle (CV) technology is a mobile platform that enables a new dimension of data exchange among vehicles and between vehicles and infrastructure. This data source could improve the estimation of Measures of Effectiveness (MOEs) for traffic operations in real-time, allowing to perfectly monitor traffic states after being fully adopted. However, as with any novel technology, the CV adoption will be a gradual process. This research focuses on determining minimum CV technology penetration rates that would guarantee accurate MOE estimates on signalized arterials. First, we present estimation methods for various MOEs such as average speed, number of stops, acceleration noise, and delay, followed by an initial assessment of the penetration rates required to accurately estimate them in undersaturated and oversaturated conditions. Next, we propose a methodology to determine the minimum CV market penetration rates to guarantee accurate MOE estimates as a function of traffic conditions, signal settings, sampling duration, and the MOE variability. A correction factor is also provided to account for small vehicle populations where sampling is done without replacement. The methodology is tested in a simulated segment of the San Pablo Avenue arterial in Berkeley, CA. The outcomes show that the minimum penetration rate required can be estimated within 1% for most MOEs under a wide range of traffic conditions. The proposed methodology can be used to determine if MOE estimates obtained with a portion of CV equipped vehicles can yield accurate enough results. The methodology could also be used to develop and assess control strategies towards improved arterial traffic operations.  相似文献   

17.
This paper investigates the transportation network reliability based on the information provided by detectors installed on some links. A traffic flow simulator (TFS) model is formulated for assessing the network reliability (in terms of travel time reliability), in which the variation of perceived travel time error and the fluctuations of origin-destination (OD) demand are explicitly considered. On the basis of prior OD demand and partial updated detector data, the TFS can estimate the link flows for the whole network together with link/path travel times, and their variance and covariance. The travel time reliability by OD pair can also be assessed and the OD matrix can be updated simultaneously. A Monte Carlo based algorithm is developed to solve the TFS model. The application of the proposed TFS model is illustrated by a numerical example.  相似文献   

18.
A field experiment in Yokohama (Japan) reveals that a macroscopic fundamental diagram (MFD) linking space-mean flow, density and speed exists on a large urban area. The experiment used a combination of fixed detectors and floating vehicle probes as sensors. It was observed that when the somewhat chaotic scatter-plots of speed vs. density from individual fixed detectors were aggregated the scatter nearly disappeared and points grouped neatly along a smoothly declining curve. This evidence suggests, but does not prove, that an MFD exists for the complete network because the fixed detectors only measure conditions in their proximity, which may not represent the whole network. Therefore, the analysis was enriched with data from GPS-equipped taxis, which covered the entire network. The new data were filtered to ensure that only full-taxi trips (i.e., representative of automobile trips) were retained in the sample. The space-mean speeds and densities at different times-of-day were then estimated for the whole study area using relevant parts of the detector and taxi data sets. These estimates were still found to lie close to a smoothly declining curve with deviations smaller than those of individual links – and entirely explained by experimental error. The analysis also revealed a fixed relation between the space-mean flows on the whole network, which are easy to estimate given the existence of an MFD, and the trip completion rates, which dynamically measure accessibility.  相似文献   

19.
Probe vehicles provide some of the most useful data for road traffic monitoring because they can acquire wide-ranging and spatiotemporally detailed information at a relatively low cost compared with traditional fixed-point observation. However, current GPS-equipped probe vehicles cannot directly provide us volume-related variables such as flow and density. In this paper, we propose a new probe vehicle-based estimation method for obtaining volume-related variables by assuming that a probe vehicle can measure the spacing to its leading one. This assumption can be realized by utilizing key technologies in advanced driver assistance systems that are expected to spread in the near future. We developed a method of estimating the flow, density, and speed from the probe vehicle data without exogenous assumptions on traffic flow characteristics, such as a fundamental diagram. In order to quantify the characteristics of the method, we performed a field experiment at a real-world urban expressway by employing prototypes of the probe vehicles with spacing measurement equipment. The result showed that the proposed method could accurately estimate the 5 min and hourly traffic volumes with probe vehicle penetration rate of 3.5% and 0.2%, respectively.  相似文献   

20.
The integration of internet and mobile phones has opened the door to a new wave of utilizing private vehicles as probes not only for performance evaluation but for traffic control as well, gradually replacing the role of traffic surveillance systems as the dominant source of traffic data. To prepare for such a paradigm shift, one needs to overcome some key institutional barriers, in particular, the privacy issue. A Highway Voting System (HVS) is proposed to address this issue in which drivers provide link- and/or path-based vehicle data to the traffic management system in the form of “votes” in order to receive favorable service from traffic control. The proposed HVS offers a platform that links data from individual vehicles directly with traffic control. In the system, traffic control responds to voting vehicles in a way similar to the current system responding to prioritized vehicles and providing the requested services accordingly. We show in the paper that the proposed “voting” system can effectively resolve the privacy issue which often hampers traffic engineers from getting detailed data from drivers. Strategies to entice drivers into “voting” so as to increase the market penetration level under all traffic conditions are discussed. Though the focus of the paper is on addressing the institutional issues associated with data acquisition from individual vehicles, other research topics associated with the proposed system are identified. Two examples are given to demonstrate the impact of the proposed system on algorithm development and traffic control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号