首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urban traffic light controllers are responsible for maintaining good performance within the transport network. Most existing and proposed controllers have design parameters that require some degree of tuning, with the sensitivity of the performance measure to the parameter often high. To date, tuning has been largely treated as a manual calibration exercise but ignores the effects of changes in traffic condition, such as demand profile evolution due to urban population growth. To address this potential shortcoming, we seek to use a newly developed extremum-seeker to calibrate the parameters of existing urban traffic light controllers in real-time such that a certain performance measure is optimised. The results are demonstrated for three categories of traffic controllers on a microscopic urban traffic simulation. It is demonstrated that the extremum-seeking scheme is able to seek the optimal parameters, with respect to a certain performance measure, for each of these traffic light controllers in an urban, uni-modal traffic environment.  相似文献   

2.
The use of Intelligent Transportation Systems (ITS) in construction work zones to disseminate traffic information has increased significantly in recent years, mainly with the use of Variable Message Signs (VMS). VMS are used based on the assumption that informed drivers will make better travel decisions, thereby reducing congestion. However, the extent of change in driver behavior is difficult to predict prior to ITS deployment. This difficulty leads to the larger problem of justifying investment in ITS. This article proposes an ITS deployment decision support tool using micro‐simulation. The approach determines the required diversion effectiveness of a work zone ITS deployment using VMS. The methodology was tested using the Glenmore Trail/Elbow Drive/5th Street interchange project (GE5) in Calgary, Canada. The results indicate that the proposed approach will assist agencies in justifying ITS investment by exhibiting the potential resultant societal benefits.  相似文献   

3.
Recent developments of information and communication technologies (ICT) have enabled vehicles to timely communicate with each other through wireless technologies, which will form future (intelligent) traffic systems (ITS) consisting of so-called connected vehicles. Cooperative driving with the connected vehicles is regarded as a promising driving pattern to significantly improve transportation efficiency and traffic safety. Nevertheless, unreliable vehicular communications also introduce packet loss and transmission delay when vehicular kinetic information or control commands are disseminated among vehicles, which brings more challenges in the system modeling and optimization. Currently, no data has been yet available for the calibration and validation of a model for ITS, and most research has been only conducted for a theoretical point of view. Along this line, this paper focuses on the (theoretical) development of a more general (microscopic) traffic model which enables the cooperative driving behavior via a so-called inter-vehicle communication (IVC). To this end, we design a consensus-based controller for the cooperative driving system (CDS) considering (intelligent) traffic flow that consists of many platoons moving together. More specifically, the IEEE 802.11p, the de facto vehicular networking standard required to support ITS applications, is selected as the IVC protocols of the CDS, in order to investigate how the vehicular communications affect the features of intelligent traffic flow. This study essentially explores the relationship between IVC and cooperative driving, which can be exploited as the reference for the CDS optimization and design.  相似文献   

4.
5.
We consider two stochastic variants of the Share-a-Ride problem: one with stochastic travel times and one with stochastic delivery locations. Both variants are formulated as a two-stage stochastic programming model with recourse. The objective is to maximize the expected profit of serving a set of passengers and parcels using a set of homogeneous vehicles. Our solution methodology integrates an adaptive large neighborhood search heuristic and three sampling strategies for the scenario generation (fixed sample size sampling, sample average approximation, and sequential sampling procedure). A computational study is carried out to compare the proposed approaches. The results show that the convergence rate depends on the source of stochasticity in the problem: stochastic delivery locations converge faster than stochastic travel times according to the numerical test. The sample average approximation and the sequential sampling procedure show a similar performance. The performance of the fixed sample size sampling is better compared to the other two approaches. The results suggest that the stochastic information is valuable in real-life and can dramatically improve the performance of a taxi sharing system, compared to deterministic solutions.  相似文献   

6.
The problem addressed here involves a controller seeking to enhance traffic network performance via real-time routing information provision to drivers while explicitly accounting for drivers’ likely reactions towards the information. A fuzzy control modeling approach is used to determine the associated behavior-consistent information-based network control strategies. Experiments are performed to compare the effectiveness of the behavior-consistent approach with traditional dynamic traffic assignment based approaches for deployment. The results show the importance of incorporating driver behavior realistically in the determination of the information strategies. Significant differences in terms of system travel time savings and compliance to the information strategies can be obtained when the behavior-consistent approach is compared to the traditional approaches. The behavior-consistent approach can provide more robust performance compared to the standard user or system optimal information strategies. Subject to a meaningful estimation of driver behavior, it can ensure system performance improvement. By contrast, approaches that do not seek to simultaneously achieve the objectives of the drivers and the controller can potentially deteriorate system performance because the controller may over-recommend or under-recommend some routes, or recommend routes that are not considered by the drivers.  相似文献   

7.
Work zones on motorways necessitate the drop of one or more lanes which may lead to significant reduction of traffic flow capacity and efficiency, traffic flow disruptions, congestion creation, and increased accident risk. Real-time traffic control by use of green–red traffic signals at the motorway mainstream is proposed in order to achieve safer merging of vehicles entering the work zone and, at the same time, maximize throughput and reduce travel delays. A significant issue that had been neglected in previous research is the investigation of the impact of distance between the merge area and the traffic lights so as to achieve, in combination with the employed real-time traffic control strategy, the most efficient merging of vehicles. The control strategy applied for real-time signal operation is based on an ALINEA-like proportional–integral (PI-type) feedback regulator. In order to achieve maximum performance of the control strategy, some calibration of the regulator’s parameters may be necessary. The calibration is first conducted manually, via a typical trial-and-error procedure. In an additional investigation, the recently proposed learning/adaptive fine-tuning (AFT) algorithm is employed in order to automatically fine-tune the regulator parameters. Experiments conducted with a microscopic simulator for a hypothetical work zone infrastructure, demonstrate the potential high benefits of the control scheme.  相似文献   

8.
This study seeks to online calibrate the parameters of aggregate evacuee behavior models used in a behavior‐consistent information‐based control module for determining information strategies for real‐time evacuation operations. It enables the deployment of an operational framework for mass evacuation that integrates three aspects underlying an evacuation operation: demand (evacuee behavior), supply (network management), and disaster characteristics. To attain behavior‐consistency, the control module factors evacuees' likely responses to the disseminated information in determining information‐based control strategies. Hence, the ability of the behavior models to predict evacuees' likely responses is critical to the effectiveness of traffic routing by information strategies. The mixed logit structure is used for the aggregate behavior models to accommodate the behavioral heterogeneity across the population. An online calibration problem is proposed to calibrate the random parameters in the behavior models by using the least square estimator to minimize the gap between the predicted network flows and unfolding traffic dynamics. Background traffic, an important but rarely studied issue for modeling evacuation traffic, is also accounted for in the proposed problem. Numerical experiments are conducted to illustrate the importance of the calibration problem for addressing the system consistency issues and integrating the demand, supply, and disaster characteristics for more efficient evacuation operations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This paper considers the problem of reducing the time that empty cars spend in classification yards of rail systems operating under real-time information and automated schedule-adjustment technologies. The proposed methodology performs dynamic reassignments of empty cars through a fast and efficient solution procedure based on the assignment algorithm. The procedure has been tested on real-life data from one of the major railroads in North America. Computational results show that the procedure runs fast and yields savings in the time that the empty cars spend in the yard.  相似文献   

10.
In 2011 in the Netherlands a field operational test was performed to investigate the possibility of using restrictive Intelligent Speed Adaptation (ISA) as a penalty system for serious speed offenders. This paper presents the overall results of the research focusing on the pros and cons of the use of ISA as a restrictive measure for serious speed offenders, and on the preconditions for deployment. The results showed that the ISA systems tested have a huge effect on driver behavior and have the potential to improve road safety by reducing the level of speeding, mean speed, as well as the standard deviation of speed. However, there are also cons: the behavioral change in driving behavior was only temporary. In addition the tested technology proved too easy to override, raised issues of equity, and a substantial back office is required when implementing the system for serious speed offenders.  相似文献   

11.
Flex-route transit, which combines the advantages of fixed-route transit and demand-responsive transit, is one of the most promising options in low-demand areas. This paper proposes a slack arrival strategy to reduce the number of rejected passengers and idle time at checkpoints resulting from uncertain travel demand. This strategy relaxes the departure time constraints of the checkpoints that do not function as transfer stations. A system cost function that includes the vehicle operation cost and customer cost is defined to measure system performance. Theoretical and simulation models are constructed to test the benefits of implementing the slack arrival strategy in flex-route transit under expected and unexpected demand levels. Experiments over a real-life flex-route transit service show that the proposed slack arrival strategy could improve the system performance by up to 40% with no additional operating cost. The results demonstrate that the proposed strategy can help transit operators provide more cost-efficient flex-route transit services in suburban and rural areas.  相似文献   

12.
A Memetic Algorithm (MA) for the calibration of microscopic traffic flow simulation models is proposed in this study. The proposed MA includes a combination of genetic and simulated annealing algorithms. The genetic algorithm performs the exploration of the search space and identifies a zone where a possible global solution could be located. After this zone has been found, the simulated annealing algorithm refines the search and locates an optimal set of parameters within that zone. The design and implementation of this methodology seeks to enable the generalized calibration of microscopic traffic flow models. Two different Corridor Simulation (CORSIM) vehicular traffic systems were calibrated for this study. All parameters after the calibration were within reasonable boundaries. The calibration methodology was developed independently of the characteristics of the traffic flow models. Hence, it is easily used for the calibration of any other model. The proposed methodology has the capability to calibrate all model parameters, considering multiple performance measures and time periods simultaneously. A comparison between the proposed MA and the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm was provided; results were similar between the two. However, the effort required to fine-tune the MA was considerably smaller when compared to the SPSA. The running time of the MA-based calibration was larger when it was compared to the SPSA running time. The MA still required some knowledge of the model in order to set adequate optimization parameters. The perturbation of the parameters during the mutation process must have been large enough to create a measurable change in the objective function, but not too large to avoid noisy measurements.  相似文献   

13.
With the recent increase in the deployment of ITS technologies in urban areas throughout the world, traffic management centers have the ability to obtain and archive large amounts of data on the traffic system. These data can be used to estimate current conditions and predict future conditions on the roadway network. A general solution methodology for identifying the optimal aggregation interval sizes for four scenarios is proposed in this article: (1) link travel time estimation, (2) corridor/route travel time estimation, (3) link travel time forecasting, and (4) corridor/route travel time forecasting. The methodology explicitly considers traffic dynamics and frequency of observations. A formulation based on mean square error (MSE) is developed for each of the scenarios and interpreted from a traffic flow perspective. The methodology for estimating the optimal aggregation size is based on (1) the tradeoff between the estimated mean square error of prediction and the variance of the predictor, (2) the differences between estimation and forecasting, and (3) the direct consideration of the correlation between link travel time for corridor/route estimation and forecasting. The proposed methods are demonstrated using travel time data from Houston, Texas, that were collected as part of the automatic vehicle identification (AVI) system of the Houston Transtar system. It was found that the optimal aggregation size is a function of the application and traffic condition.
Changho ChoiEmail:
  相似文献   

14.
Area traffic control is an important element in Intelligent Transportation System (ITS). This paper extends the lane‐based optimization method to a traffic equilibrium network, which improves the operational performance of signal‐controlled network. We formulate a decomposition approach to simultaneously optimize the lane markings and signal settings for a signal‐controlled network that comprises two levels of optimization. At the junction level, the lane markings, control sequence, and other aspects of the signal settings are optimized for individual junctions, whereas at the network level, the group‐based signal settings are optimized to take into account the re‐routing characteristics of travelers and signal coordination effects that are based on a TRANSYT traffic model, which is a well‐known procedure for evaluating the performance of signal‐controlled networks. We use a numerical example to demonstrate the effectiveness of the proposed methodology.  相似文献   

15.
A high level objective for many international governments and local operators is that highways should be managed in a way that is sustainable in terms of a Low Carbon Energy future. Recent initiatives such as the Strategic Transport Technology Plan and the policy and legal framework promoted by the European Commissions’ Intelligent Transport System (ITS) Directive and ITS Action Plan may assist with this objective. However, many levels of complexity are inherent within the (ITS) schemes that are now part of highway management, due to the linkage of various technological components to complex systems and services. Maintaining efficient, sustainable co-operative performance is therefore a major task, with inconsistencies between product suppliers, network managers and operators. As a result, it is of considerable interest to the highway operators and high level policy makers to be able to assess the performance of individual ITS schemes and furthermore, to be able to compare performance between ITS schemes. In this paper, an illustration is provided of a methodology that can be used to assess the performance of ITS schemes according to a set of sustainability criteria. A case study is introduced which compares the performance of anticipated Active Traffic Management (ATM) schemes for what the road network operator (Highways England) perceive to be the four most congested highways in England (in terms of annual average daily traffic flows). Appropriate action can then be taken to improve the energy and sustainable management of Information Communication Technology (ICT) and transport systems for the benefit of a smarter, sustainable and efficient future.  相似文献   

16.
Abstract

This paper presents a decision support methodology for long-range planning of transport systems that exhibits strategic flexibility and stochastic system parameters. Unlike one-off strategic decisions, flexible decisions should be dynamically reformulated with time. The proposed methodology is based on the construction of a tree structure of multiple interlinked tactical planning problems, each associated with a scenario in the tree, where problems under scenarios at intermediate dates incorporate in their formulation the solution of the corresponding problems associated with past (future) connected scenarios. The resulting tree structure of interconnected planning decisions becomes a strategic-tactical decision support system that allows managers to formulate suitable flexible strategic decisions that mitigate the consequences associated with downside scenarios while taking advantage of the upside opportunities. The methodology is applied to the planning of a fleet deployment through charter contracts where contract prices depend on both market behavior and the duration of the contract itself.  相似文献   

17.
Traffic movement conflict points at intersections are the points at which traffic movements intersect (including crossing, merging, and diverging). Numbers and distribution of different types of conflict points are used to evaluate intersection access management designs and safety performance. Traditionally, the determination of the numbers of conflict points for different traffic movements is based on manual methods, which causes the difficulty for computerized procedures to evaluate safety performance of different access management designs. Sometimes, a programmable calculation procedure may provide more effective solutions as compared with manual methods. This paper presents a programmable calculation procedure for the determination of the numbers of conflict points, which could be used as a basis for a computerized procedure. Concepts of virtual movement lanes and intersection quadrants are introduced to specify types of intersections, traffic lane configurations, and traffic movement regulations. Calculation models, based on such concepts, for traffic movement conflict points at signalized and unsignalized intersections can be obtained. In support of the procedure, case studies are presented in the paper. The procedure presented in the paper can be programmed into a computer program for the purpose of a computerized evaluation of intersection safety and design performance of different access management or control approaches. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A number of approaches have been developed to evaluate the impact of land development on transportation infrastructure. While traditional approaches are either limited to static modeling of traffic performance or lack a strong travel behavior foundation, today’s advanced computational technology makes it feasible to model an individual traveler’s response to land development. This study integrates dynamic traffic assignment (DTA) with a positive agent-based microsimulation travel behavior model for cumulative land development impact studies. The integrated model not only enhances the behavioral implementation of DTA, but also captures traffic dynamics. It provides an advanced yet practical approach to understanding the impact of a single or series of land development projects on an individual driver’s behavior, as well as the aggregated impacts on the demand pattern and time-dependent traffic conditions. A simulation-based optimization (SBO) approach is proposed for the calibration of the modeling system. The SBO calibration approach enhances the transferability of this integrated model to other study areas. Using a case study that focuses on the cumulative land development impact along a congested corridor in Maryland, various regional and local travel behavior changes are discussed to show the capability of this tool for behavior side estimations and the corresponding traffic impacts.  相似文献   

19.
Global Navigation Satellite Systems (GNSS) has been widely used in the provision of Intelligent Transportation System (ITS) services. Current meter level system availability can fulfill the road level applications, such as route guide, fleet management and traffic control. However, meter level of system performance is not sufficient for the advanced safety applications. These lane level safety applications requires centimeter/decimeter positioning accuracy, with high integrity, continuity and availability include lane control, collision avoidance and intelligent speed assistance, etc. Detecting lane level irregular driving behavior is the basic requirement for these safety related ITS applications. The two major issues involved in the lane level irregular driving identification are accessing to high accuracy positioning and vehicle dynamic parameters and extraction of erratic driving behaviour from this and other related information. This paper proposes an integrated solution for the lane level irregular driving detection. Access to high accuracy positioning is enabled by GNSS and Inertial Navigation System (INS) integration using filtering with precise vehicle motion models and lane information. The detection of different types of irregular driving behaviour is based on the application of a Fuzzy Inference System (FIS). The evaluation of the designed integrated systems in the field test shows that 0.5 m accuracy positioning source is required for lane level irregular driving detection algorithm and the designed system can detect irregular driving styles.  相似文献   

20.

The paper summarizes the research results and implications from the DGVII-funded Fourth Framework research project Deployment of Interurban ATT Test Scenarios (DIATS). The objective of DIATS was to identify options available in the short and medium terms, for implementing advanced transport telematics (ATT) systems for motorway-type roads and to develop scenarios of 'highest potential impact' for each of the systems identified. Included are the results of a Delphi study into the most likely deployment scenarios for ATT technologies. The methodology developed to assess the organizational, social, environmental, efficiency, safety and legal concerns associated with new ATT systems is then described. This includes stated preference questionnaires, traffic simulation modelling, driver behaviour assessment using an instrumented vehicle, analysis of accident databases and literature reviews. A multicriteria analysis of the impacts of a range of ATT systems is then presented. In particular, the results discuss the potential impacts of new in-vehicle driver assistance devices such as adaptive cruise control on the operation and effectiveness of existing fixed-infrastructure systems. The paper concludes with a prioritized list of deployment strategies of maximum impact for all of the systems assessed. The research findings are already being applied nationally and a number of field trial assessments that will assist in this are also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号