共查询到10条相似文献,搜索用时 5 毫秒
1.
Estimating the travel time reliability (TTR) of urban arterial is critical for real-time and reliable route guidance and provides theoretical bases and technical support for sophisticated traffic management and control. The state-of-art procedures for arterial TTR estimation usually assume that path travel time follows a certain distribution, with less consideration about segment correlations. However, the conventional approach is usually unrealistic because an important feature of urban arterial is the dependent structure of travel times on continuous segments. In this study, a copula-based approach that incorporates the stochastic characteristics of segments travel time is proposed to model arterial travel time distribution (TTD), which serves as a basis for TTR quantification. First, segments correlation is empirically analyzed and different types of copula models are examined. Then, fitting marginal distributions for segment TTD is conducted by parametric and non-parametric regression analysis, respectively. Based on the estimated parameters of the models, the best-fitting copula is determined in terms of the goodness-of-fit tests. Last, the model is examined at two study sites with AVI data and NGSIM trajectory data, respectively. The results of path TTD estimation demonstrate the advantage of the proposed copula-based approach, compared with the convolution model without capturing segments correlation and the empirical distribution fitting methods. Furthermore, when considering the segments correlation effect, it was found that the estimated path TTR is more accurate than that by the convolution model. 相似文献
2.
This paper proposes a combined usage of microscopic traffic simulation and Extreme Value Theory (EVT) for safety evaluation. Ten urban intersections in Fengxian District in Shanghai were selected in the study and three calibration strategies were applied to develop simulation models for each intersection: a base strategy with fundamental data input, a semi-calibration strategy adjusting driver behavior parameters based on Measures of Effectiveness (MOE), and a full-calibration strategy altering driver behavior parameters by both MOE and Measures of Safety (MOS). SSAM was used to extract simulated conflict data from vehicle trajectory files from VISSIM and video-based data collection was introduced to assist trained observers to collect field conflict data. EVT-based methods were then employed to model both simulated/field conflict data and derive the Estimated Annual Crash Frequency (EACF), used as Surrogate Safety Measures (SSM). PET was used for EVT measurement for three conflict types: crossing, rear-end, and lane change. EACFs based on three simulation calibration strategies were compared with field-based EACF, conventional SSM based on Traffic Conflict Techniques (TCT), and actual crash frequency, in terms of direct correlation, rank correlation, and prediction accuracy. The results showed that, MOS should be considered during simulation model calibration and EACF based on the full-calibration strategy appeared to be a better choice for simulation-based safety evaluation, compared to other candidate safety measures. In general, the combined usage of microscopic traffic simulation and EVT is a promising tool for safety evaluation. 相似文献
3.
Vehicle headway modeling and its inferences in macroscopic/microscopic traffic flow theory: A survey
Vehicle headway distribution models are widely used in traffic engineering fields, since they reflect the fundamental uncertainty in drivers' car-following maneuvers and meanwhile provide a concise way to describe the stochastic feature of traffic flows. This paper presents a systematic review of vehicle headway distribution studies in the last few decades. Since it is impossible to enumerate the merits and drawbacks of all of existing distribution models, we emphasize four advances of headway distribution modeling in this paper. First, we highlight the chronicle of key assumptions on the existing distribution models and explain why this evolution occurs. Second, we show that departure headways measured for interrupted flows on urban streets and headways measured for uninterrupted flows on freeways have common features and can be simulated by a unified microscopic car-following model. The interesting finding helps gather two kinds of headway distribution models under one umbrella. Third, we review different approaches that aim to link microscopic car-following models and mesoscopic vehicle headway distribution models. Fourth, we show that both the point scattering on the density-flow plot and the shape of traffic flow breakdown curve implicitly depend on the vehicular headway distribution. These findings reveal pervasive connections between macroscopic traffic flow models and mesoscopic headway distribution. All these new insights bring new vigor into vehicle headway studies and open research frontiers in this field. 相似文献
4.
Due to the difficulty of obtaining accurate real-time visibility and vehicle based traffic data at the same time, there are only few research studies that addressed the impact of reduced visibility on traffic crash risk. This research was conducted based on a new visibility detection system by mounting visibility sensor arrays combined with adaptive learning modules to provide more accurate visibility detections. The vehicle-based detector, Wavetronix SmartSensor HD, was installed at the same place to collect traffic data. Reduced visibility due to fog were selected and analyzed by comparing them with clear cases to identify the differences based on several surrogate measures of safety under different visibility classes. Moreover, vehicles were divided into different types and the vehicles in different lanes were compared in order to identify whether the impact of reduced visibility due to fog on traffic crash risk varies depending on vehicle types and lanes. Log-Inverse Gaussian regression modeling was then applied to explore the relationship between time to collision and visibility together with other traffic parameters. Based on the accurate visibility and traffic data collected by the new visibility and traffic detection system, it was concluded that reduced visibility would significantly increase the traffic crash risk especially rear-end crashes and the impact on crash risk was different for different vehicle types and for different lanes. The results would be helpful to understand the change in traffic crash risk and crash contributing factors under fog conditions. We suggest implementing the algorithms in real-time and augmenting it with ITS measures such as VSL and DMS to reduce crash risk. 相似文献
5.
6.
A continuum model that describes a disordered, heterogeneous traffic stream is presented. Such systems are widely prevalent in developing countries where classical traffic models cannot be readily applied. The characteristics of such systems are unique since drivers of smaller vehicles exploit their maneuverability to move ahead through lateral gaps at lower speeds. At higher speeds, larger vehicles press their advantage of greater motive power. The traffic stream at the microscopic level is disordered and defines a porous medium. Each vehicle is considered to move through a series of pores defined by other vehicles. A speed-density relationship that explicitly considers the pore space distribution is presented. This captures the considerable dynamics between vehicle classes that are overlooked when all classes are converted to a reference class (usually Passenger Car Equivalents) as is traditionally done. Using a finite difference approximation scheme, traffic evolution for a two-class traffic stream is shown. 相似文献
7.
This paper proposes a reformulation of count models as a special case of generalized ordered-response models in which a single latent continuous variable is partitioned into mutually exclusive intervals. Using this equivalent latent variable-based generalized ordered response framework for count data models, we are then able to gainfully and efficiently introduce temporal and spatial dependencies through the latent continuous variables. Our formulation also allows handling excess zeros in correlated count data, a phenomenon that is commonly found in practice. A composite marginal likelihood inference approach is used to estimate model parameters. The modeling framework is applied to predict crash frequency at urban intersections in Arlington, Texas. The sample is drawn from the Texas Department of Transportation (TxDOT) crash incident files between 2003 and 2009, resulting in 1190 intersection-year observations. The results reveal the presence of intersection-specific time-invariant unobserved components influencing crash propensity and a spatial lag structure to characterize spatial dependence. Roadway configuration, approach roadway functional types, traffic control type, total daily entering traffic volumes and the split of volumes between approaches are all important variables in determining crash frequency at intersections. 相似文献
8.
The speed-density or flow-density relationship has been considered as the foundation of traffic flow theory. Existing single-regime models calibrated by the least square method (LSM) could not fit the empirical data consistently well both in light-traffic/free-flow conditions and congested/jam conditions. In this paper, first, we point out that the inaccuracy of single-regime models is not caused solely by their functional forms, but also by the sample selection bias. Second, we apply a weighted least square method (WLSM) that addresses the sample selection bias problem. The calibration results for six well-known single-regime models using the WLSM fit the empirical data reasonably well both in light-traffic/free-flow conditions and congested/jam conditions. Third, we conduct a theoretical investigation that reveals the deficiency associated with the LSM is because the expected value of speed (or a function of it) is nonlinear with regard to the density (or a function of it). 相似文献
9.
This paper presents an agent-based approach to modelling individual driver behaviour under the influence of real-time traffic information. The driver behaviour models developed in this study are based on a behavioural survey of drivers which was conducted on a congested commuting corridor in Brisbane, Australia. Commuters’ responses to travel information were analysed and a number of discrete choice models were developed to determine the factors influencing drivers’ behaviour and their propensity to change route and adjust travel patterns. Based on the results obtained from the behavioural survey, the agent behaviour parameters which define driver characteristics, knowledge and preferences were identified and their values determined. A case study implementing a simple agent-based route choice decision model within a microscopic traffic simulation tool is also presented. Driver-vehicle units (DVUs) were modelled as autonomous software components that can each be assigned a set of goals to achieve and a database of knowledge comprising certain beliefs, intentions and preferences concerning the driving task. Each DVU provided route choice decision-making capabilities, based on perception of its environment, that were similar to the described intentions of the driver it represented. The case study clearly demonstrated the feasibility of the approach and the potential to develop more complex driver behavioural dynamics based on the belief–desire–intention agent architecture. 相似文献
10.
A fuzzy stochastic approach to the multicriteria selection of an aircraft for regional chartering 下载免费PDF全文
Luiz Flavio Autran Monteiro Gomes Joao Erick de Mattos Fernandes João Carlos C. B. Soares de Mello 《先进运输杂志》2014,48(3):223-237
This article deals with the problem of decision support for the selection of an aircraft. This is a problem faced by an airline company that is investing in regional charter flights in Brazil. The company belongs to an economic group whose core business is logistics. The problem has eight alternatives to be evaluated under 11 different criteria, whose measurements can be exact, stochastic, or fuzzy. The technique chosen for analyzing and then finding a solution to the problem is the multicriteria decision aiding method named NAIADE (Novel Approach to Imprecise Assessment and Decision Environments). The method used allows tackling the problems by working with quantitative as well as qualitative criteria under uncertainty and imprecision. Another considerable advantage of NAIADE over other multicriteria methods relies in its characteristics of not requiring a prior definition of the weights by the decision maker. As a conclusion, it can be said that the use of NAIADE provided for consistent results to that aircraft selection problem. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献