首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study proposes an aggregate approach to model evacuee behavior in the context of no-notice evacuation operations. It develops aggregate behavior models for evacuation decision and evacuation route choice to support information-based control for the real-time stage-based routing of individuals in the affected areas. The models employ the mixed logit structure to account for the heterogeneity across the evacuees. In addition, due to the subjectivity involved in the perception and interpretation of the ambient situation and the information received, relevant fuzzy logic variables are incorporated within the mixed logit structure to capture these characteristics. Evacuation can entail emergent behavioral processes as the problem is characterized by a potential threat from the extreme event, time pressure, and herding mentality. Simulation experiments are conducted for a hypothetical terror attack to analyze the models’ ability to capture the evacuation-related behavior at an aggregate level. The results illustrate the value of using a mixed logit structure when heterogeneity is pronounced. They further highlight the benefits of incorporating fuzzy logic to enhance the prediction accuracy in the presence of subjective and linguistic elements in the problem.  相似文献   

2.
3.
Pedestrian behavior models have successfully reproduced human movement in many situations. However, few studies focus on modeling human behavior in the context of terrorist attacks. Terrorist attacks commonly occur in crowded public areas and result in a large number of casualties. This paper proposes a three-stage model to reproduce a series of complex behaviors and decision-making processes at the onset of an attack, when pedestrians generally do not have clear targets and have to deal with fuzzy information from the attack. The first stage of the model builds a Bayesian belief network to represent the pedestrians’ initial judgment of the threat and their evacuation decisions. The second stage focuses on pedestrians’ global assessment of the situation through an analogy with diffusion processes. The third stage uses a cost function to reproduce the trade-offs of distance, safety, and emotional impact when considering a path to take. The model is validated using a video from the November 2015 Paris attack. The behavioral characteristics and trajectories of three pedestrians extracted from the video are reproduced by the simulation results based on the model. The research can be used to set rules when performing risk analysis and strategic defensive resource allocation of terrorist attacks using agent-based simulation methods.  相似文献   

4.
Residential location search has become an important topic to both practitioners and researchers as more detailed and disaggregate land-use and transportation demand models are developed which require information on individual household location decisions. The housing search process starts with an alternative formation and screening stage. At this level households evaluate all potential alternatives based on their lifestyle, preferences, and utilities to form a manageable choice set with a limited number of plausible alternatives. Then the final residential location is selected among these alternatives. This two-stage decision making process can be used for both aggregate zone-level selection as well as searching disaggregate parcel or building-based housing markets for potential dwellings. In this paper a zonal level household housing search model is developed. Initially, a household specific choice set is drawn from the entire possible alternatives in the area based on the average household work distance to each alternative. Following the choice set formation step, a discrete choice model is utilized for modeling the final residential zone selection of the household. A hazard-based model is used for the choice set formation module while the final choice selection is modeled using a multinomial logit formulation with a deterministic sample correction factor. The approach presented in the paper provides a remedy for the large choice set problem typically faced in housing search models.  相似文献   

5.
Most traffic delays in regional evacuations occur at intersections. Lane-based routing is one strategy for reducing these delays. This paper presents a network flow model for identifying optimal lane-based evacuation routing plans in a complex road network. The model is an integer extension of the minimum-cost flow problem. It can be used to generate routing plans that trade total vehicle travel-distance against merging, while preventing traffic crossing-conflicts at intersections. A mixed-integer programming solver is used to derive optimal routing plans for a sample network. Manual capacity analysis and microscopic traffic simulation are used to compare the relative efficiency of the plans. An application is presented for Salt Lake City, Utah.  相似文献   

6.
Household decisions on the energy consumption behavior are with regard to the situations that multiple end-uses (e.g., domestic appliances and vehicles) are simultaneously hold and consumed. To deal with this issue, the multiple discrete–continuous models are the best choices from the behavioral perspective. This study compared two types of utility theory-based multiple discrete–continuous models, which are widely applied in the literature: multiple discrete–continuous extreme value (MDCEV) model and the improved resource allocation model based on the multi-linear function (RAM-MLF). A household energy consumption survey was carried out in Beijing in 2010, and the comparative analysis on the performance of these two models is carried out based on the survey data. Results show that the overall performance of RAM-MLF is slightly superior to the MDCEV model due to the incorporation of the inter-end-use interaction and the relative importance of end uses. Moreover, the utility structure by using the satiation parameters to represent the diminishing marginal utility with the increasing consumption shows better fitness than the structure only using the logarithmic function. These findings can be contributed to understand the household energy consumption behavior, while suggest the potential improvement of the model structure, which is mainly focused on the utility form and the decision making mechanism.  相似文献   

7.
Despite growing prevalence of online shopping, its impacts on mobility are poorly understood. This partially results from the lack of sufficiently detailed data. In this paper we address this gap using consumer panel data, a new dataset for this context. We analyse one year long longitudinal grocery shopping purchase data from London shoppers to investigate the effects of online shopping on overall shopping activity patterns and personal trips. We characterise the temporal structure of shopping demand by means of the duration between shopping episodes using hazard-based duration models. These models have been used to study inter-shopping spells for traditional shopping in the literature, however effects of online shopping were not considered. Here, we differentiate between shopping events and shopping trips. The former refers to all types of shopping activity including both online and in-store, while the latter is restricted to physical shopping trips. Separate models were estimated for each and results suggest potential substitution effects between online and in-store in the context of grocery shopping. We find that having shopped online since the last shopping trip significantly reduces the likelihood of a physical shopping trip. We do not observe the same effect for inter-event durations. Hence, shopping online does not have a significant effect on overall shopping activity frequency, yet affects shopping trip rates. This is a key finding and suggests potential substitution between online shopping and physical trips to the store. Additional insights on which factors, including basket size and demographics, affect inter-shopping durations are also drawn.  相似文献   

8.
This paper adds partial household evacuation to the traditional binary evacuate/stay decision. Based on data from a survey of Jacksonville, FL residents after Hurricane Matthew, multinomial (MNL) and random parameter MNL models were developed to determine the influential factors and whether some variables’ effects are more nuanced than prior literature suggests. The random parameter model was preferred to the fixed parameters model. Variables significant in this model included injury concern, certainty about hurricane impact location, age, marital status, family cohesion, and living in mobile or detached homes. Greater injury concern results in lower likelihood of none of the household evacuating and greater likelihood of partial evacuation, but lower likelihood of full household evacuation. Similarly, greater certainty about hurricane impact increased the probability of partial household evacuation but decreased the probability of full evacuation. Respondent age had heterogenous effects; for 85.54% of respondents, additional years of age increased the likelihood of the household staying. Married households had a higher likelihood of staying or evacuating together. Similarly, greater family cohesion was associated with the household remaining together. Living in mobile homes decreased the likelihood that all of the household stays or evacuates and increased the probability of partial household evacuation. Living in a single-family detached home was associated with lower likelihood of all of the household staying or evacuating and a greater likelihood of a partial household evacuation. These findings can inform strategies that influence full or partial household evacuations, material requirements based on these decisions, and ways to reduce family risk.  相似文献   

9.
A basic mathematical model for evacuation problems in urban areas   总被引:1,自引:0,他引:1  
Real life situations like floods, hurricanes or chemical accidents may cause the evacuation of a certain area to rescue the affected population. To enable a fast and a safe evacuation a basic mixed-integer evacuation model has been developed that provides a reorganization of the traffic routing of a certain area for the case of an evacuation. This basic problem of evacuation minimizes the evacuation-time while prohibiting conflicts within intersections. Our evacuation model is a dynamic network flow problem with additional variables for the number and direction of used lanes and with additional complicating constraints.Because of the size of the time-expanded network, the computational effort required by standard software is already very high for tiny instances. To deal with realistic instances we propose a heuristic approach.  相似文献   

10.
A model of joint activity participation between household members   总被引:6,自引:0,他引:6  
A proportional shares model of daily time allocation is developed and applied to the analysis of joint activity participation between adult household members. The model is unique in its simultaneous representation of each decision maker's decisions concerning independent activity participation, allocation of time to joint activities, and the interplay between individual and joint activities. Further, the model structure ensures that predicted shares of joint activity outcomes be the same for both decision makers, an improvement over models that do not make interpersonal linkages explicit. The empirical analysis of travel diary data shows that employment commitments and childcare responsibilities have significant effects on tradeoffs between joint and independent activities. In addition, evidence is presented for the continued relevance of gender-based role differences in caring for children and employment participation.  相似文献   

11.
Individual evacuation decisions are often characterized by the influence of one’s social network. In this paper a threshold model of social contagion, originally proposed in the network science literature, is presented to characterize this social influence in the evacuation decision making process. Initiated by a single agent, the condition of a cascade when a portion of the population decides to evacuate has been derived from the model. Simulation models are also developed to investigate the effects of community mixing patterns and the initial seed on cascade propagation and the effect of previous time-steps considered by the agents and the strength of ties on average cascade size. Insights related to social influence include the significant role of mixing patterns among communities in the network and the role of the initial seed on cascade propagation. Specifically, faster propagation of warning is observed in community networks with greater inter-community connections.  相似文献   

12.
We develop a model for integrated analysis of household location and travel choices and investigate it from a theoretical point of view.Each household makes a joint choice of location (zone and house type) and a travel pattern that maximizes utility subject to budget and time constraints. Prices for housing are calculated so that demand equals supply in each submarket. The travel pattern consists of a set of expected trip frequencies to different destinations with different modes. The joint time and budget constraints ensure that time and cost sensitivities are consistent throughout the model. Choosing the entire travel pattern at once, as opposed to treating travel decisions as a series of isolated choices, allows the marginal utilities of trips to depend on which other trips are made.When choosing trip frequencies to destinations, households are assumed to prefer variation to an extent varying with the purpose of the trip. The travel pattern will tend to be more evenly distributed across trip ends the less similar destinations and individual preferences are. These heterogeneities of destinations and individual preferences, respectively, are expressed in terms of a set of parameters to be estimated.  相似文献   

13.
We introduce complex network analysis and use a commercial vehicle’s observed trip as a proxy for a business relation between two facilities in its activity chain. We extract facility locations by applying density-based clustering to GPS data of commercial vehicle activities. The network among the facilities is then extracted by analysing the activity chains of more than 25,000 commercial vehicles. Centrality metrics prove useful and novel in identifying and locating key logistics players. Transport planners and decision makers can benefit from such an approach as it allows them to design more targeted initiatives and policy interventions.  相似文献   

14.
A GA-based household scheduler   总被引:1,自引:0,他引:1  
One way of making activity-based travel analysis operational for transport planning is multi-agent micro-simulation. Modelling activity and trip generation based on individual and social characteristics are central steps in this method. The model presented here generates complete daily activity schedules based on the structure of a household and its members’ activity calendars. The model assumes that the household is another basic decision-making unit for travel demand aside from individual mobility needs. Results of the model are schedules containing complete information about activity type and sequence, locations, and means of transportation, as well as activity start times and durations. The generated schedules are the outcome of a probabilistic optimisation using genetic algorithms. This iterative method improves solutions found in a random search according to the specification of a fitness criterion, which equals utility here. It contains behavioural assumptions about individuals as well as the household level. Individual utility is derived from the number of activities and their respective durations. It is reduced by costs of travelling and penalties for late, respectively early arrival. The household level is represented directly by the utility of joint activities, and indirectly by allocation of activities and means of transportation to household members. The paper presents initial tests with a three-person household, detailing resulting schedules, and discussing run-time experiences. A sensitivity analysis of the joint utility parameter impact is also included.  相似文献   

15.
Traffic evacuation is a critical task in disaster management. Planning its evacuation in advance requires taking many factors into consideration such as the destination shelter locations and numbers, the number of vehicles to clear, the traffic congestions as well as traffic road configurations. A traffic evacuation simulation tool can provide the emergency managers with the flexibility of exploring various scenarios for identifying more accurate model to plan their evacuation. This paper presents a traffic evacuation simulation system based on integrated multi-level driving-decision models which generate agents’ behavior in a unified framework. In this framework, each agent undergoes a Strategic, Cognitive, Tactical and Operational (SCTO) decision process, in order to make a driving decision. An agent’s actions are determined by a combination, on each process level, of various existing behavior models widely used in different driving simulation models. A wide spectrum of variability in each agent’s decision and driving behaviors, such as in pre-evacuation activities, in choice of route, and in the following or overtaking the car ahead, are represented in the SCTO decision process models to simulate various scenarios. We present the formal model for the agent and the multi-level decision models. A prototype simulation system that reflects the multi-level driving-decision process modeling is developed and implemented. Our SCTO framework is validated by comparing with MATSim tool, and the experimental results of evacuation simulation models are compared with the existing evacuation plan for densely populated Beijing, China in terms of various performance metrics. Our simulation system shows promising results to support emergency managers in designing and evaluating more realistic traffic evacuation plans with multi-level agent’s decision models that reflect different levels of individual variability of handling stress situations. The flexible combination of existing behavior and decision models can help generating the best evacuation plan to manage each crisis with unique characteristics, rather than resorting to a fixed evacuation plan.  相似文献   

16.
Household maintenance such as childcare not only induces activities and travel but also impose time constraints on individuals’ participation in other activities and travel. Instead of sharing household responsibilities, households may hire domestic helpers for household maintenance. Alternatively, they may get helps from members of the extended family such as parents of household heads. This paper develops a model to analyze households’ trade-offs between hiring domestic helpers for household maintenance and taking these responsibilities by household members. We will apply household economic theories to develop a time allocation model incorporating interactions among household members. We assume that households trade off the money they are willing to spend for hiring helpers with the time they may need to spend for household maintenance activities to maximize utilities, subject to time constraints. The model may be used to analyze the impacts of domestic helpers on household members’ time allocation to subsistence, maintenance and recreation activities. It may also be applied to analyze the impacts of government policies regarding the minimum salary of domestic helpers and the change of household members’ wage rates on households’ decision to hire helpers. The paper extends the current literature on intra-household activity–travel interactions by considering external helps from domestic helpers, which may contribute to the understanding of activity–travel patterns of household members.  相似文献   

17.
18.
This paper proposes a rule-based neural network model to simulate driver behavior in terms of longitudinal and lateral actions in two driving situations, namely car-following situation and safety critical events. A fuzzy rule based neural network is constructed to obtain driver individual driving rules from their vehicle trajectory data. A machine learning method reinforcement learning is used to train the neural network such that the neural network can mimic driving behavior of individual drivers. Vehicle actions by neural network are compared to actions from naturalistic data. Furthermore, this paper applies the proposed method to analyze the heterogeneities of driving behavior from different drivers’ data.Driving data in the two driving situations are extracted from Naturalistic Truck Driving Study and Naturalistic Car Driving Study databases provided by the Virginia Tech Transportation Institute according to pre-defined criteria. Driving actions were recorded in instrumented vehicles that have been equipped with specialized sensing, processing, and recording equipment.  相似文献   

19.
A methodology for optimizing variable pedestrian evacuation guidance in buildings with convex polygonal interior spaces is proposed. The optimization of variable guidance is a bi-level problem. The calculation of variable guidance based on the prediction of congestion and hazards is the upper-level problem. The prediction of congestion provided the variable guidance is the lower-level problem. A local search procedure is developed to solve the problem. The proposed methodology has three major contributions. First, a logistic regression model for guidance compliance behavior is calibrated using a virtual reality experiment and the critical factors for the behavior are identified. Second, the guidance compliance and following behaviors are considered in the lower-level problem. Third, benchmarks are calculated to evaluate the performance of optimized variable guidance, including the lower bound of the maximum evacuation time and the maximum evacuation time under a fixed guidance. Finally, the proposed methodology is validated with numerical examples. Results show that the method has the potential to reduce evacuation time in emergencies.  相似文献   

20.
This paper addresses the theoretical and empirical issues involved in modeling complex travel patterns. Existing models have the shortcoming of not representing the interdependencies among trip links in trip chains with multiple non-home stops. A theoretical model based on utility theory and explicitly accounting for the trade-offs involved in the choice of multiple-stop chains is developed. Using this theoretical model, utility maximizing conditions for a household's choice of a daily travel pattern are derived. The optimum travel pattern is described in terms of the number of chairs (tours) traveled on a given day and in terms of the number of stops (sojourns) made on each of those chains. For a given household, the form of the optimum pattern is a function of the transportation expenditures (time, cost) required to reach potential destinations. Constraints on the conditions of optimality due to the limited and discrete nature of travel pattern alternatives are also considered. Parameters of the general utility function were estimated empirically using actual travel data derived from a home interview survey taken in Washington, D.C. The multinomial logit model is used to relate utility scores for the alternative travel patterns to choice probabilities. The resulting parameter estimates agree with theoretical expectations and with empirical results obtained in other studies. In order to demonstrate the empirical and theoretical implications of the model, forecasts for various transportation policies (e.g., gasoline price increases, transit fare reductions), as made by this model and by other less complex models, are compared. The results of these comparisons indicate the need for expanding the scope of existing travel forecasting models to explicit considerations of trip chaining behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号