首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vehicles typically deteriorate with accumulating mileage and emit more tailpipe air pollutants per mile. Although incentive programs for scrapping old, high-emitting vehicles have been implemented to reduce urban air pollutants and greenhouse gases, these policies may create additional sales of new vehicles as well. From a life cycle perspective, the emissions from both the additional vehicle production and scrapping need to be addressed when evaluating the benefits of scrapping older vehicles. This study explores an optimal fleet conversion policy based on mid-sized internal combustion engine vehicles in the US, defined as one that minimizes total life cycle emissions from the entire fleet of new and used vehicles. To describe vehicles' lifetime emission profiles as functions of accumulated mileage, a series of life cycle inventories characterizing environmental performance for vehicle production, use, and retirement was developed for each model year between 1981 and 2020. A simulation program is developed to investigate ideal and practical fleet conversion policies separately for three regulated pollutants (CO, NMHC, and NOx) and for CO2. According to the simulation results, accelerated scrapping policies are generally recommended to reduce regulated emissions, but they may increase greenhouse gases. Multi-objective analysis based on economic valuation methods was used to investigate trade-offs among emissions of different pollutants for optimal fleet conversion policies.  相似文献   

2.
Municipal fleet vehicle purchase decisions provide a direct opportunity for cities to reduce emissions of greenhouse gases (GHG) and air pollutants. However, cities typically lack comprehensive data on total life cycle impacts of various conventional and alternative fueled vehicles (AFV) considered for fleet purchase. The City of Houston, Texas, has been a leader in incorporating hybrid electric (HEV), plug-in hybrid electric (PHEV), and battery electric (BEV) vehicles into its fleet, but has yet to adopt any natural gas-powered light-duty vehicles. The City is considering additional AFV purchases but lacks systematic analysis of emissions and costs. Using City of Houston data, we calculate total fuel cycle GHG and air pollutant emissions of additional conventional gasoline vehicles, HEVs, PHEVs, BEVs, and compressed natural gas (CNG) vehicles to the City's fleet. Analyses are conducted with the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model. Levelized cost per kilometer is calculated for each vehicle option, incorporating initial purchase price minus residual value, plus fuel and maintenance costs. Results show that HEVs can achieve 36% lower GHG emissions with a levelized cost nearly equal to a conventional sedan. BEVs and PHEVs provide further emissions reductions, but at levelized costs 32% and 50% higher than HEVs, respectively. CNG sedans and trucks provide 11% emissions reductions, but at 25% and 63% higher levelized costs, respectively. While the results presented here are specific to conditions and vehicle options currently faced by one city, the methods deployed here are broadly applicable to informing fleet purchase decisions.  相似文献   

3.
This paper evaluates the impacts on energy consumption and carbon dioxide (CO2) emissions from the introduction of electric vehicles into a smart grid, as a case study. The AVL Cruise software was used to simulate two vehicles, one electric and the other engine-powered, both operating under the New European Driving Cycle (NEDC), in order to calculate carbon dioxide (CO2) emissions, fuel consumption and energy efficiency. Available carbon dioxide data from electric power generation in Brazil were used for comparison with the simulated results. In addition, scenarios of gradual introduction of electric vehicles in a taxi fleet operating with a smart grid system in Sete Lagoas city, MG, Brazil, were made to evaluate their impacts. The results demonstrate that CO2 emissions from the electric vehicle fleet can be from 10 to 26 times lower than that of the engine-powered vehicle fleet. In addition, the scenarios indicate that even with high factors of CO2 emissions from energy generation, significant reductions of annual emissions are obtained with the introduction of electric vehicles in the fleet.  相似文献   

4.
This paper evaluates the contribution of the road transport sector, in a typical small developing country, to global greenhouse gas emissions. An inventory of transport emissions, using the Intergovernmental Panel on Climate Change methodology, is presented for the base year 1997. The Motor Vehicle Emission Inventory computer based model, with inputs adjusted to the fleet and conditions at hand, is used to predict contributions of different classes of vehicles and to forecast the corresponding emissions for the year 2020. Emissions reduction and the sensitivity to changes in factors such as fleet age, fleet technology, average speed and travel volume are assessed. Scenarios are developed to explore the feasibility and benefits of two different mitigation approaches. The first approach stresses the reduction potential of measures related to the fleet age and new technology application. The second addresses the effectiveness of transport planning and demand reduction in mitigating emissions. The air quality impact of these scenarios is presented. The results bring to light the essence of the problem that technical improvements alone, in the existing fleet, will not be able to offset impacts due to the growth in future travel demand. Policy settings to counterbalance the increase in emissions are investigated in that context.  相似文献   

5.
This paper is the second of a two part study which quantifies the economic and greenhouse performance of conventional, hybrid and fully electric passenger vehicles operating in Australian driving conditions. This second study focuses on the life cycle greenhouse gas emissions. Two vehicle sizes are considered, Class-B and Class-E, which bracket the large majority of passenger vehicles on Australian roads.Using vehicle simulation models developed in the first study, the trade-offs between the ability of increasingly electric powertrains in curtailing the tailpipe emissions and the corresponding rise in the embedded vehicle emissions have been evaluated. The sensitivity of the life cycle emissions to fuel, electricity and the change in the energy mix are all considered. In conjunction with the total cost of ownership calculated in the companion paper, this allows the cost of mitigating life cycle greenhouse gas emissions through electrification of passenger transport to be estimated under different scenarios. For Class-B vehicles, fully electric vehicles were found to have a higher total cost of ownership and higher life cycle emissions than an equivalent vehicle with an internal combustion engine. For Class-E vehicles, hybrids are found to be the most cost effective whilst also having lowest life cycle emissions under current conditions. Further, hybrid vehicles also exhibit little sensitivity in terms of greenhouse emissions and cost with large changes in system inputs.  相似文献   

6.
The role alternative car technologies may play in effectively tackling the problem of climate change is still highly uncertain. This paper aims at investigating possible impacts of car powertrain technologies on future energy demand and its corresponding greenhouse gas emissions until 2030. A system dynamics model covering nine car technologies in China, France, Germany, India, Japan and the United States was applied, with a focus on electric cars. Four main scenarios are constructed and sensitivity analysis undertaken. Greenhouse gas emissions from cars in the six countries are simulated to reach up to 2.6 gigatonnes in 2030 (a 13–32% increase between 2020 and 2030, depending on the scenario). The main conclusion from model-based policy analysis is that electric cars may have a positive contribution to emissions mitigation in the passenger road transport system. However, greenhouse gas emissions from cars arising from the combined effect of car manufacturing and scrappage and electricity generation processes are expected to grow more dramatically. As a result, actions that support both low-emission (re-)manufacturing and clean electricity generation are needed. These results complement accurate but static life cycle assessments and open the discussion for dynamic model assumptions.  相似文献   

7.
This paper investigates how California may reduce transportation greenhouse gas emissions 80% below 1990 levels by 2050 (i.e., 80in50). A Kaya framework that decomposes greenhouse gas emissions into the product of population, transport intensity, energy intensity, and carbon intensity is used to analyze emissions and mitigation options. Each transportation subsector, including light-duty, heavy-duty, aviation, rail, marine, agriculture, and off-road vehicles, is analyzed to identify specific mitigation options and understand its potential for reducing greenhouse gas emissions. Scenario analysis shows that, while California’s 2050 target is ambitious, it can be achieved in transport if a concerted effort is made to change travel behavior and the vehicles and fuels that provide mobility. While no individual ‘‘Silver Bullet” strategy exists that can achieve the goals, a portfolio approach that combines strategies could yield success. The 80in50 scenarios show the impacts of advanced vehicle and fuels technologies as well as the role of travel demand reduction, which can significantly reduce energy and resource requirements and the level of technology development needed to meet the target.  相似文献   

8.
Lithium traction batteries are a key enabling technology for plug-in electric vehicles (PEVs). Traction battery manufacture contributes to vehicle production emissions, and battery performance can have significant effects on life cycle greenhouse gas (GHG) emissions for PEVs. To assess emissions from PEVs, a life cycle perspective that accounts for vehicle production and operation is needed. However, the contribution of batteries to life cycle emissions hinge on a number of factors that are largely absent from previous analyses, notably the interaction of battery chemistry alternatives and the number of electric vehicle kilometers of travel (e-VKT) delivered by a battery. We compare life cycle GHG emissions from lithium-based traction batteries for vehicles using a probabilistic approach based on 24 hypothetical vehicles modeled on the current US market. We simulate life-cycle emissions for five commercial lithium chemistries. Examining these chemistries leads to estimates of emissions from battery production of 194–494 kg CO2 equivalent (CO2e) per kWh of battery capacity. Combined battery production and fuel cycle emissions intensity for plug-in hybrid electric vehicles is 226–386 g CO2e/e-VKT, and for all-electric vehicles 148–254 g CO2e/e-VKT. This compares to emissions for vehicle operation alone of 140–244 g CO2e/e-VKT for grid-charged electric vehicles. Emissions estimates are highly dependent on the emissions intensity of the operating grid, but other upstream factors including material production emissions, and operating conditions including battery cycle life and climate, also affect life cycle GHG performance. Overall, we find battery production is 5–15% of vehicle operation GHG emissions on an e-VKT basis.  相似文献   

9.
There have been ongoing debates over whether battery electric vehicles contribute to reducing greenhouse gas emissions in China’s context, and if yes, whether the greenhouse gas emissions reduction compensates the cost increment. This study informs such debate by examining the life-cycle cost and greenhouse gas emissions of conventional vehicles, hybrid electric vehicles and battery electric vehicles, and comparing their cost-effectiveness for reducing greenhouse gas emissions. The results indicate that under a wide range of vehicle and driving configurations (range capacity, vehicle use intensity, etc.), battery electric vehicles contribute to reducing greenhouse gas emissions compared with conventional vehicles, although their current cost-effectiveness is not comparable with hybrid electric vehicles. Driven by grid mix optimization, power generation efficiency improvement, and battery cost reduction, the cost-effectiveness of battery electric vehicles is expected to improve significantly over the coming decade and surpass hybrid electric vehicles. However, considerable uncertainty exists due to the potential impacts from factors such as gasoline price. Based on the analysis, it is recommended that the deployment of battery electric vehicles should be prioritized in intensively-used fleets such as taxis to realize high cost-effectiveness. Technology improvements both in terms of power generation and vehicle electrification are essential in improving the cost-effectiveness of battery electric vehicles.  相似文献   

10.
Vehicle lightweighting reduces fuel cycle greenhouse gas (GHG) emissions but may increase vehicle cycle (production) GHG emissions because of the GHG intensity of lightweight material production. Life cycle GHG emissions are estimated and sensitivity and Monte Carlo analyses conducted to systematically examine the variables that affect the impact of lightweighting on life cycle GHG emissions. The study uses two real world gliders (vehicles without powertrain or battery) to provide a realistic basis for the analysis. The conventional and lightweight gliders are based on the Ford Fusion and Multi Material Lightweight Vehicle, respectively. These gliders were modelled with internal combustion engine vehicle (ICEV), hybrid electric vehicle (HEV), and battery electric vehicle (BEV) powertrains. The probability that using the lightweight glider in place of the conventional (steel-intensive) glider reduces life cycle GHG emissions are: ICEV, 100%; HEV, 100%, and BEV, 74%.The extent to which life cycle GHG emissions are reduced depends on the powertrain, which affects fuel cycle GHG emissions. Lightweighting an ICEV results in greater base case GHG emissions mitigation (10 t CO2eq.) than lightweighting a more efficient HEV (6 t CO2eq.). BEV lightweighting can result in higher or lower GHG mitigation than gasoline vehicles, depending largely on the source of electricity.  相似文献   

11.
The transition to a low carbon transport world requires a host of demand and supply policies to be developed and deployed. Pricing and taxation of vehicle ownership plays a major role, as it affects purchasing behavior, overall ownership and use of vehicles. There is a lack in robust assessments of the life cycle energy and environmental effects of a number of key car pricing and taxation instruments, including graded purchase taxes, vehicle excise duties and vehicle scrappage incentives. This paper aims to fill this gap by exploring which type of vehicle taxation accelerates fuel, technology and purchasing behavioral transitions the fastest with (i) most tailpipe and life cycle greenhouse gas emissions savings, (ii) potential revenue neutrality for the Treasury and (iii) no adverse effects on car ownership and use.The UK Transport Carbon Model was developed further and used to assess long term scenarios of low carbon fiscal policies and their effects on transport demand, vehicle stock evolution, life cycle greenhouse gas emissions in the UK. The modeling results suggest that policy choice, design and timing can play crucial roles in meeting multiple policy goals. Both CO2 grading and tightening of CO2 limits over time are crucial in achieving the transition to low carbon mobility. Of the policy scenarios investigated here the more ambitious and complex car purchase tax and feebate policies are most effective in accelerating low carbon technology uptake, reducing life cycle greenhouse gas emissions and, if designed carefully, can avoid overburdening consumers with ever more taxation whilst ensuring revenue neutrality. Highly graduated road taxes (or VED) can also be successful in reducing emissions; but while they can provide handy revenue streams to governments that could be recycled in accompanying low carbon measures they are likely to face opposition by the driving population and car lobby groups. Scrappage schemes are found to save little carbon and may even increase emissions on a life cycle basis.The main policy implication of this work is that in order to reduce both direct and indirect greenhouse gas emissions from transport governments should focus on designing incentive schemes with strong up-front price signals that reward ‘low carbon’ and penalize ‘high carbon’. Policy instruments should also be subject to early scrutiny of the longer term impacts on government revenue and pay attention to the need for flanking policies to boost these revenues and maintain the marginal cost of driving.  相似文献   

12.
ABSTRACT

This paper investigates strategies that could achieve an 80% reduction in transportation emissions from current levels by 2050 in the City of Philadelphia. The baseline daily lifecycle emissions generated by road transportation in the Greater Philadelphia Region in 2012 were quantified using trip information from the 2012 Household Travel Survey (HTS). Emissions were projected to the year 2050 accounting for population growth and trends in vehicle technology for both the Greater Philadelphia Region and the City of Philadelphia. The impacts of vehicle technology and shifts in travel modes on greenhouse gas (GHG) emissions in 2050 were quantified using a scenario approach. The analysis of 12 different scenarios suggests that 80% reduction in emissions is technically feasible through a combination of active transportation, cleaner fuels for public transit vehicles, and a significant market penetration of battery-electric vehicles. The additional electricity demand associated with greater use of electric vehicles could amount to 10.8 TWh/year. The use of plug-in hybrid electric vehicles (PHEV) shows promising results due to high reductions in GHG emissions at a potentially manageable cost.  相似文献   

13.
In today’s world of volatile fuel prices and climate concerns, there is little study on the relationship between vehicle ownership patterns and attitudes toward vehicle cost (including fuel prices and feebates) and vehicle technologies. This work provides new data on ownership decisions and owner preferences under various scenarios, coupled with calibrated models to microsimulate Austin’s personal-fleet evolution.Opinion survey results suggest that most Austinites (63%, population-corrected share) support a feebate policy to favor more fuel efficient vehicles. Top purchase criteria are price, type/class, and fuel economy. Most (56%) respondents also indicated that they would consider purchasing a Plug-in Hybrid Electric Vehicle (PHEV) if it were to cost $6000 more than its conventional, gasoline-powered counterpart. And many respond strongly to signals on the external (health and climate) costs of a vehicle’s emissions, more strongly than they respond to information on fuel cost savings.Twenty five-year simulations of Austin’s household vehicle fleet suggest that, under all scenarios modeled, Austin’s vehicle usage levels (measured in total vehicle miles traveled or VMT) are predicted to increase overall, along with average vehicle ownership levels (both per household and per capita). Under a feebate, HEVs, PHEVs and Smart Cars are estimated to represent 25% of the fleet’s VMT by simulation year 25; this scenario is predicted to raise total regional VMT slightly (just 2.32%, by simulation year 25), relative to the trend scenario, while reducing CO2 emissions only slightly (by 5.62%, relative to trend). Doubling the trend-case gas price to $5/gallon is simulated to reduce the year-25 vehicle use levels by 24% and CO2 emissions by 30% (relative to trend).Two- and three-vehicle households are simulated to be the highest adopters of HEVs and PHEVs across all scenarios. The combined share of vans, pickup trucks, sport utility vehicles (SUVs), and cross-over utility vehicles (CUVs) is lowest under the feebate scenario, at 35% (versus 47% in Austin’s current household fleet). Feebate-policy receipts are forecasted to exceed rebates in each simulation year.In the longer term, gas price dynamics, tax incentives, feebates and purchase prices along with new technologies, government-industry partnerships, and more accurate information on range and recharging times (which increase customer confidence in EV technologies) should have added effects on energy dependence and greenhouse gas emissions.  相似文献   

14.
Changes in battery technology for hybrid or fuel cell vehicles will have significant impacts on US lead flows. Hybrid vehicles contain lead–acid batteries as auxiliary power sources although these lead–acid batteries may be replaced in the future. Given the importance of lead–acid battery recycling to US lead flows, changes in battery-related lead demand could alter the domestic production of lead and affect lead releases to the environment, particularly to air and land. We investigate lead demand for various prospective changes in the US automotive fleet. These include the complete replacement of lead–acid batteries from vehicles (such as next-generation hybrid electric vehicles or use of alternative batteries) or the introduction of micro-hybrid vehicles (lead battery pack vehicles). A dynamic model is described and used to examine the immediate and long-term lead flow patterns, and the associated lead emissions. We conclude that the adoption of non-lead–acid hybrid vehicles does not result in the lead market collapsing unless there is rapid introduction of these vehicles to the fleet, 50% by 2007. A 10% increase in micro-hybrid (battery pack) vehicles results in a predicted increase of 26 tons of lead emissions over the status quo or a 6% increase over 2004 Toxics Release Inventory releases from mining, primary smelting, and secondary smelting.  相似文献   

15.
This paper investigates the market potential and environmental benefits of replacing internal combustion engine (ICE) vehicles with battery electric vehicles (BEVs) in the taxi fleet in Nanjing, China. Vehicle trajectory data collected by onboard global positioning system (GPS) units are used to study the travel patterns of taxis. The impacts of charger power, charging infrastructure coverage, and taxi apps on the feasibility of electric taxis are quantified, considering taxi drivers’ recharging behavior and operating activities. It is found that (1) depending on the charger power and coverage, 19% (with AC Level 2 chargers and 20% charger network coverage) to 56% (with DC chargers and 100% charger network coverage) of the ICE vehicles can be replaced by electric taxis without driving pattern changes; (2) by using taxi apps to find nearby passengers and charging stations, drivers could utilize the empty cruising time to charge the battery, which may increase the acceptance of BEVs by up to 82.6% compared to the scenario without taxi apps; and (3) tailpipe emissions in urban areas could be significantly reduced with taxi electrification: a mixed taxi fleet with 46% compressed-natural-gas-powered (CNG) and 54% electricity-powered vehicles can reduce the tailpipe emissions by 48% in comparison with the fleet of 100% CNG taxis.  相似文献   

16.
The majority of previous studies examining life cycle greenhouse gas (LCGHG) emissions of battery electric vehicles (BEVs) have focused on efficiency-oriented vehicle designs with limited battery capacities. However, two dominant trends in the US BEV market make these studies increasingly obsolete: sales show significant increases in battery capacity and attendant range and are increasingly dominated by large luxury or high-performance vehicles. In addition, an era of new use and ownership models may mean significant changes to vehicle utilization, and the carbon intensity of electricity is expected to decrease. Thus, the question is whether these trends significantly alter our expectations of future BEV LCGHG emissions.To answer this question, three archetypal vehicle designs for the year 2025 along with scenarios for increased range and different use models are simulated in an LCGHG model: an efficiency-oriented compact vehicle; a high performance luxury sedan; and a luxury sport utility vehicle. While production emissions are less than 10% of LCGHG emissions for today’s gasoline vehicles, they account for about 40% for a BEV, and as much as two-thirds of a future BEV operated on a primarily renewable grid. Larger battery systems and low utilization do not outweigh expected reductions in emissions from electricity used for vehicle charging. These trends could be exacerbated by increasing BEV market shares for larger vehicles. However, larger battery systems could reduce per-mile emissions of BEVs in high mileage applications, like on-demand ride sharing or shared vehicle fleets, meaning that trends in use patterns may countervail those in BEV design.  相似文献   

17.
The transition to low-carbon transportation fuels plays a key role in ongoing efforts to combat climate change. This analysis seeks to optimize potential alternative fuel portfolios that would lead to a 10% reduction in fuel carbon intensity by 2020 as required under California’s Low Carbon Fuel Standard (LCFS).We present a novel, probabilistic modeling approach for evaluating alternative fuel portfolios based on their marginal greenhouse gas (GHG) abatement costs. Applied to a case study region in Northwest California, our model enables us to quantify the financial cost of GHG reduction via each fuel pathway, as well as for a portfolio deployed to meet the LCFS target. It also enables us to explore the sensitivity of the alternative fuel portfolio, evaluating the impact of fluctuating prices, fuel carbon intensities, and technology penetrations on the makeup of the portfolio and on the average cost of GHG abatement.We find that battery electric vehicles play a critical role, as they offer the lowest-financial-cost significant abatement in almost all plausible scenarios. However, electric vehicles alone will not be sufficient to reach the target; low-carbon biofuels can be expected to play a role in the achievement of 2020 Low Carbon Fuel Standard targets.  相似文献   

18.
Fuel-switching personal transportation from gasoline to electricity offers many advantages, including lower noise, zero local air pollution, and petroleum-independence. But alleviations of greenhouse gas (GHG) emissions are more nuanced, due to many factors, including the car’s battery range. We use GPS-based trip data to determine use type-specific, GHG-optimized ranges. The dataset comprises 412 cars and 384,869 individual trips in Ann Arbor, Michigan, USA. We use previously developed algorithms to determine driver types, such as using the car to commute or not. Calibrating an existing life cycle GHG model to a forecast, low-carbon grid for Ann Arbor, we find that the optimum range varies not only with the drive train architecture (plugin-hybrid versus battery-only) and charging technology (fast versus slow) but also with the driver type. Across the 108 scenarios we investigated, the range that yields lowest GHG varies from 65 km (55+ year old drivers, ultrafast charging, plugin-hybrid) to 158 km (16–34 year old drivers, overnight charging, battery-only). The optimum GHG reduction that electric cars offer – here conservatively measured versus gasoline-only hybrid cars – is fairly stable, between 29% (16–34 year old drivers, overnight charging, battery-only) and 46% (commuters, ultrafast charging, plugin-hybrid). The electrification of total distances is between 66% and 86%. However, if cars do not have the optimum range, these metrics drop substantially. We conclude that matching the range to drivers’ typical trip distances, charging technology, and drivetrain is a crucial pre-requisite for electric vehicles to achieve their highest potential to reduce GHG emissions in personal transportation.  相似文献   

19.
Electrification of the transport sector is considered as a solution to reduce greenhouse gases (GHGs) emissions and achieve sustainable mobility. Specifically in the case of electrification of passenger vehicles, various industrial and policy initiatives have been introduced. In this article, we present and assess three approaches – pro-technology, pro-simplicity and mix (of the aforementioned approaches) – to achieve target emission reductions in the Norwegian road transport sector. We also assess the influence of including ‘Guarantee of Origin’ certification for the electricity production in accounting for typical consumption electricity mix in Norway.Results show that for the same reductions in tail-pipe GHG emissions, pro-technology, pro-simplicity, and the mix scenario offer 22%, 29% and 28% reduction in the life cycle GHG emissions respectively, compared to the reference scenario in year 2020. However, the pro-simplicity scenario requires 25% reduction in vehicle-km driven compared to the pro-technology scenario, which provides the same passenger car mobility as in the reference case. When the GHG intensity of the electricity mix used to power EVs is corrected to account for actual consumption mix in Norway, a 13% reduction in the net GHG benefit of pro-technology scenario is observed.  相似文献   

20.
Freight transportation by truck, train, and ship accounts for 5% of the United States’ annual energy consumption (U.S. Energy Information Administration, 2017a). Much of this freight is transported in shipping containers. Lightweighting containers is an unexplored strategy to decrease energy and GHG emissions. We evaluate life cycle fuel savings and environmental performance of lightweighting scenarios applied to a forty-foot (12.2 meters) container transported by ship, train, and truck. Use phase burdens for both conventional and lightweighted containers (steel reduction, substitution with aluminum, or substitution with high tensile steel) were compared to life cycle burdens. The study scope ranged from the transportation of one container 100 km to the lifetime movement of the global container fleet on ships. Case studies demonstrated the impact of lightweighting on typical multimodal freight deliveries to the United States. GREET 1 and 2 (Argonne National Laboratory, 2016a,b) were used to estimate the total fuel cycle burdens associated with use phase fuel consumption. Fuel consumption was determined using modal Fuel Reduction Values (FRV), which relate mass reduction to fuel reduction. A lifetime reduction of 21% in the fuel required to transport a container, and 1.4% in the total fuel required to move the vehicles, cargo, and containers can be achieved. It was determined that a 10% reduction in mass of the system will result in a fuel reduction ranging from 2% to 8.4%, depending on the mode. Globally, container lightweighting can reduce energy demand by 3.6 EJ and GHG emissions by 300 million tonnes CO2e over a 15-year lifetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号