首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of our study is to develop a “corrected average emission model,” i.e., an improved average speed model that accurately calculates CO2 emissions on the road. When emissions from the central roads of a city are calculated, the existing average speed model only reflects the driving behavior of a vehicle that accelerates and decelerates due to signals and traffic. Therefore, we verified the accuracy of the average speed model, analyzed the causes of errors based on the instantaneous model utilizing second-by-second data from driving in a city center, and then developed a corrected model that can improve the accuracy. We collected GPS data from probe vehicles, and calculated and analyzed the average emissions and instantaneous emissions per link unit. Our results showed that the average speed model underestimated CO2 emissions with an increase in acceleration and idle time for a speed range of 20 km/h and below, which is the speed range for traffic congestion. Based on these results, we analyzed the relationship between average emissions and instantaneous emissions according to the average speed per link unit, and we developed a model that performed better with an improved accuracy of calculated CO2 emissions for 20 km/h and below.  相似文献   

2.
Traffic congestion caused by traffic accidents contributes to CO2 emissions. Generally, more efficient and prompt responses to accidents lead to reduced traffic congestion as well as CO2 emissions. Here we assess the CO2 emissions impacts of freeway accidents, applies an existing model to capture spatio-temporally congested regions caused by freeway accidents. A case study for the assessment of CO2 emissions impacts of based on the results from the model is presented.  相似文献   

3.
Carbon emissions from road transport are one of the main issues related to modern transport planning. To address them adequately, the acquisition of reliable data about traffic flow is an essential prerequisite. However, the large quantity and the heterogeneity of available information often cause problems; missing or incomplete data are one of the most critical aspects. This paper discusses how technology handles imperfect information in order to obtain more accurate quantification of CO2 emissions. First, an analysis of single estimators and combination models is provided, highlighting their main characteristics. Then, the TANINO model (Tool for the Analysis of Non-conservative Carbon Emissions In TraNspOrt) is presented, jointly developed at the University of Seville and at the IUAV University of Venice. It consists of two different modules: the first is a combination model that optimizes the results of three traffic flow single estimators, while the second is a macro-model of carbon evaluation, which takes into account road infrastructure, vehicle type and traffic conditions. TANINO is then tested to calculate CO2 emissions along the ring road of the Spanish city of Seville, showing its more efficient performance, compared to the single estimators normally adopted for such aims. Transport planning can benefit from the adequate knowledge of traffic flows and related CO2 emissions, since it allows a more reliable monitoring of the progresses granted by specific carbon policies.  相似文献   

4.
CO2 emissions are one of the main externalities related to freight transport. Their evaluation is extremely difficult, due to the presence of several scientific and economic uncertainties. This paper discusses the approaches currently adopted by literature to deal with CO2, proposing a methodology based on a Well-To-Wheel quantification and an economic valuation deriving from a meta-regression. A freight transport analysis is then provided for one of the most critical areas of Europe, the Alps. Here, the different approaches adopted by the single nations determine divergent results in terms of modal shift towards rail and, consequently, CO2 emissions. An integrated and transnational strategy could lead to better results, avoiding detoured traffic and increasing the share of railway traffic. To this aim, the carbon impacts of three specific alpine-wide measures are evaluated: namely, Alpine Crossing Exchange, Emissions Trading and Differentiated Toll System. In comparison with business-as-usual scenario, the case study reveals a potential CO2 saving up to more than 600,000 tons and 38 M€ for the year 2030, thus providing policy makers with an integrative transnational tool able to evaluate the long-term carbon impact of their transport decisions.  相似文献   

5.
Policy options to reduce passenger transport emissions in Europe are simulated with the EUCARS model. The EUCARS welfare analysis includes changes in consumer surplus, congestion and tax revenues. Simulations also address consumer myopia, i.e., the underestimation of fuel costs by car buyers. The best policy mix to reduce CO2 consists of fuel taxes that are combined with differentiated purchase taxes to correct for the assumed myopia. This combination could reduce CO2 emissions of over 25% without reducing contemporaneous well-being. For the reduction of conventional emissions, an equivalent best mix includes an emissions-based kilometre tax combined with a purchase feebate. This mix allows a 60% reduction in toxic emissions without any noticeable welfare reduction. The overall superiority of these two mixes compared to alternative choices is higher when the evaluation includes a broad group of externalities, a premium on public funds, and positive feedbacks across emissions categories. Local traffic management measures are important zero-cost complements for an overall emissions strategy.  相似文献   

6.
Nowadays, evaluating CO2 emissions efficiency and its marginal abatement cost in transportation sectors has been a hot topic. However, while evaluating the CO2 marginal abatement cost using data envelopment analysis approach, the weak disposability of CO2 may imply positive abatement cost, which undoubtedly violates our common sense. To obtain non-positive marginal abatement cost, CO2 emissions should be treated as an input. To reconcile this contradiction, this paper intends to propose a global, directional distance function model based on previous study to investigate the productivity, economic efficiency, CO2 emissions efficiency, and marginal abatement cost of the China’s regional transportation sectors during 2007–2012. The results show that: (1) the productivity, economic efficiency and CO2 emissions efficiency of different regions differ widely. More specifically, the coastal areas of south China perform better than the other areas in terms of productivity, economic efficiency, and CO2 emissions efficiency. (2) Generally, the economic efficiency is greater than CO2 emissions efficiency, which is relatively low in most areas. (3) A negative correlation is found between CO2 emissions efficiency and its marginal abatement cost. For a 1% increase in CO2 emissions efficiency, the CO2 marginal abatement cost declines by 102 Yuan (in 2004 constant price). The results imply that improving CO2 emissions efficiency plays an important role in marginal abatement cost reduction, and it also provides us a new approach to reduce abatement cost besides the technical progress.  相似文献   

7.
The main purpose of this paper is to develop a bi-level pricing model to minimize the CO2e emissions and the total travel time in a small road network. In the lower level of the model, it is assumed that users of the road network find a dynamic user equilibrium which minimizes the total costs of those in the system. For the higher level of the model, different road toll strategies are applied in order to minimize the CO2e emissions. The model has been applied to an illustrative example. It shows the effects on traffic flows, revenues, total time and CO2e emissions for different numbers of servers collecting tolls and different pricing strategies over a morning peak traffic period. The results show that the CO2e emissions produced can be significantly affected by the number of servers and the type of toll strategy employed. The model is also used to find the best toll strategy when there is a constraint on the revenue that is required to be raised from the toll and how this affects the emissions produced. Further runs compare strategies to minimize the CO2e emissions with those that minimize total travel time in the road system. In the illustrative example, the results for minimizing CO2e emissions are shown to be similar to the results obtained from minimizing the total travel time.  相似文献   

8.
This paper looks at CO2 emissions on limited access highways in a microscopic and stochastic environment using an optimal design approach. Estimating vehicle emissions based on second-by-second vehicle operation allows the integration of a microscopic traffic simulation model with the latest US Environmental Protection Agency’s mobile source emissions model to improve accuracy. A factorial experiment on a test bed prototype of the I-4 urban limited access highway corridor located in Orlando, Florida was conducted to identify the optimal settings for CO2 emissions reduction and to develop a microscopic transportation emission prediction model. An exponentially decaying function towards a limiting value expressed in the freeway capacity is found to correlate with CO2 emission rates. Moreover, speeds between 55 and 60 mph show emission rate reduction effect while maintaining up to 90% of the freeway’s capacity. The results show that speed has a significant impact on CO2 emissions when detailed and microscopic analysis of vehicle operations of acceleration and deceleration are considered.  相似文献   

9.
This article investigates whether anticipated technological progress can be expected to offset the CO2 emissions resulting from rapid air traffic growth. Global aviation CO2 emissions projections are examined for eight geographical zones until 2025. Air traffic flows are forecast using a dynamic panel-data econometric model, and then converted into corresponding quantities of air traffic CO2 emissions using specific hypotheses and energy factors. None of our nine scenarios appears compatible with the objective of 450 ppm CO2-eq. recommended by the Intergovernmental Panel on Climate Change. Nor is any compatible with the Panel’s aim of limiting global warming to 3.2 °C.  相似文献   

10.
This paper focuses on assessing and applying the Federal Aviation Administration’s System for assessing Aviation’s Global Emissions (SAGE), Version 1.5, to evaluate global aircraft fuel consumption and emissions. The model is capable of computing fuel burn and emissions on a flight-by-flight, fleet and global basis. Here, a parametric study was conducted to rank-order the effects that the modeling uncertainties had on estimates of fuel burn and emissions. Statistical methods were applied to analyze both the random and systematic errors of the model. Also, applying the model to a sample policy analysis case allowed an examination of more stringent engine certification standards for mitigating aviation emissions. Uncertainties of the model were carefully accounted for in the fuel burn and emissions scenarios of the policy options. Results show that for some applications, SAGE may be used to resolve small differences in fleet emissions performance. Although the absolute uncertainty in flight-by-flight NOx predictions from the model are of the order of 40%, results show that it is well within the current capabilities of the model to distinguish between the fleet average NOx emissions associated with the typical NOx stringency options considered in policy analyses.  相似文献   

11.
There is a considerable body of studies on the relationship between daily transport activities and CO2 emissions. However, how these emissions vary in different weather conditions within and between the seasons of the year is largely unknown. Because individual activity–travel patterns are not static but vary in different weather conditions, it is immensely important to understand how CO2 emissions vary due to the change of weather. Using Swedish National Travel Survey data, with emission factors calculated through the European emission factor model ARTEMIS, this study is a first attempt to derive the amount of CO2 emission changes subject to the change of weather conditions. A series of econometric models was used to model travel behaviour variables that are crucial for influencing individual CO2 emissions. The marginal effects of weather variables on travel behaviour variables were derived. The results show an increase of individual CO2 emissions in a warmer climate and in more extreme temperature conditions, whereas increasing precipitation amounts and snow depths show limited effects on individual CO2 emissions. It is worth noting that the change in CO2 emissions in the scenario of a warmer climate and a more extreme temperature tends to be greater than the sum of changes in CO2 emissions in each individual scenario. Given that a warmer climate and more extreme weather could co-occur more frequently in the future, this result suggests even greater individual CO2 emissions than expected in such a future climate.  相似文献   

12.
This study focuses on the development of a microscopic traffic simulation and emission modeling system which aims at quantifying the effects of different types of traffic calming measures on vehicle emissions both at a link-level and at a network-level. It also investigates the effects of isolated traffic-calming measures at a corridor level and area-wide calming schemes, using a scenario analysis. Our study is set in Montreal, Canada where a traffic simulation model for a dense urban neighborhood is extended with capabilities for microscopic emission estimation. The results indicate that on average, isolated calming measures increase carbon dioxide (CO2), carbon monoxide (CO), and nitrogen oxides (NOx) emissions by 1.5, 0.3, and 1.5 %, respectively across the entire network. Area-wide schemes result in a percentage increase of 3.8 % for CO2, 1.2 % for CO, and 2.2 % for NOx across the entire network. Along specific corridors where traffic calming measures were simulated, increases in emissions of up to 83 % were observed. We also account for the effect of different measures on traffic volumes and observe moderate decreases in areas that have undergone traffic calming. In spite of traffic flow reductions, total emissions do increase.  相似文献   

13.
The future of US transport energy requirements and emissions is uncertain. Transport policy research has explored a number of scenarios to better understand the future characteristics of US light-duty vehicles. Deterministic scenario analysis is, however, unable to identify the impact of uncertainty on the future US vehicle fleet emissions and energy use. Variables determining the future fleet emissions and fuel use are inherently uncertain and thus the shortfall in understanding the impact of uncertainty on the future of US transport needs to be addressed. This paper uses a stochastic technology and fleet assessment model to quantify the uncertainties in US vehicle fleet emissions and fuel use for a realistic yet ambitious pathway which results in about a 50% reduction in fleet GHG emissions in 2050. The results show the probability distribution of fleet emissions, fuel use, and energy consumption over time out to 2050. The expected value for the fleet fuel consumption is about 450 and 350 billion litres of gasoline equivalent with standard deviations of 40 and 80 in 2030 and 2050, respectively. The expected value for the fleet GHG emissions is about 1360 and 850 Mt CO2 equivalent with standard deviation of 130 and 230 in 2030 and 2050 respectively. The parameters that are major contributors to variations in emissions and fuel consumption are also identified and ranked through the uncertainty analysis. It is further shown that these major contributors change over time, and include parameters such as: vehicle scrappage rate, annual growth of vehicle kilometres travelled in the near term, total vehicle sales, fuel economy of the dominant naturally-aspirated spark ignition vehicles, and percentage of gasoline displaced by cellulosic ethanol. The findings in this paper demonstrate the importance of taking uncertainties into consideration when choosing amongst alternative fuel and emissions reduction pathways, in the light of their possible consequences.  相似文献   

14.
Energy and emissions impacts of a freeway-based dynamic eco-driving system   总被引:1,自引:0,他引:1  
Surface transportation consumes a vast quantity of fuel and accounts for about a third of the US CO2 emissions. In addition to the use of more fuel-efficient vehicles and carbon-neutral alternative fuels, fuel consumption and CO2 emissions can be lowered through a variety of strategies that reduce congestion, smooth traffic flow, and reduce excessive vehicle speeds. Eco-driving is one such strategy. It typically consists of changing a person’s driving behavior by providing general static advice to the driver (e.g. do not accelerate too quickly, reduce speeds, etc.). In this study, we investigate the concept of dynamic eco-driving, where advice is given in real-time to drivers changing traffic conditions in the vehicle’s vicinity. This dynamic strategy takes advantage of real-time traffic sensing and telematics, allowing for a traffic management system to monitor traffic speed, density, and flow, and then communicates advice in real-time back to the vehicles. By providing dynamic advice to drivers, approximately 10–20% in fuel savings and lower CO2 emissions are possible without a significant increase in travel time. Based on simulations, it was found that in general, higher percentage reductions in fuel consumption and CO2 emission occur during severe compared to less congested scenarios. Real-world experiments have also been carried out, showing similar reductions but to a slightly smaller degree.  相似文献   

15.
In 2014, highway vehicles accounted for 72.8% of all Greenhouse Gases emissions from transportation in Europe. In the United States (US), emissions follow a similar trend. Although many initiatives try to mitigate emissions by focusing on traffic operations, little is known about the relationship between emissions and road design. It is feasible that some designs may increase average flow speed and reduce accelerations, consequently minimizing emissions.This study aims to evaluate the impact of road horizontal alignment on CO2 emissions produced by passenger cars using a new methodology based on naturalistic data collection. Individual continuous speed profiles were collected from actual drivers along eleven two-lane rural road sections that were divided into 29 homogeneous road segments. The CO2 emission rate for each homogeneous road segment was estimated as the average of CO2 emission rates of all vehicles driving, estimated by applying the VT-Micro model.The analysis concluded that CO2 emission rates increase with the Curvature Change Rate. Smooth road segments normally allowed drivers to reach higher speeds and maintain them with fewer accelerations. Additionally, smother segments required less time to cover the same distance, so emissions per length were lower. It was also observed that low mean speeds produce high CO2 emission rates and they increase even more on roads with high speed dispersions.Based on this data, several regression models were calibrated for different vehicle types to estimate CO2 emissions on a specific road segment. These results could be used to incorporate sustainability principles to highway geometric design.  相似文献   

16.
The paper develops a forecasting model of emissions from traffic flows embracing the dynamics of driving behavior due to variations in payload. To measure of emissions at the level of individual vehicles under varying payloads a portable emission measurement system is used. This paper reports on a model based on data at the level of individual vehicles for a representative road trajectory. The model aggregates the data to the level of a homogeneous flow dependent of velocity and specific power, which is dependent on payload weight. We find a lean specification for the model that provides emission factors for CO2, NOx, HC, CO, and NO2. The results indicate that, in comparison with earlier models, NOx emissions in particular tend to be underestimated.  相似文献   

17.
The increase of CO2 emissions generated by land-transport is a major policy concern of the European Union but the upward trend in transport use makes it difficult for member states to comply with Kyoto Protocol targets. This paper develops an input–output methodology to analyse the structure of CO2 emissions from land-transport and applies this to several European Union countries. It shows how production linkages between sectors and the structure of final demand affect land-transport emissions in these countries. The paper confirms the relevance of the emissions-intensity factor to explain differences in the emissions of the transport sector across countries, but also shows the importance of technology-production linkages between sectors in an economic system that has usually been neglected in the past.  相似文献   

18.
Subnational incentives to adopt zero emission vehicles (ZEVs) are critical for reducing the external economic damages posed by transportation to air quality and the climate. Few studies estimate these damages for on-road freight, especially at scales relevant for subnational policies requiring cross-border cooperation. Here, we assess the damages to US receptors from emissions of air pollutants (PM2.5, NOx, SO2, NH3), and greenhouse gases (CO2, CH4, N2O) from medium and heavy duty freight trucking, and the benefits of ZEV adoption by census division in the Province of Ontario. We develop an integrated modelling framework connecting a travel demand model, a mobile emissions simulator, and a regression based marginal damages model of air pollutants and climate change. We estimate $1.9 billion (2010 USD) in annual cross-border damages, or $0.16/VKT, resulting from scaled up atmospheric emissions from a ‘typical day’ of medium and heavy duty truck traffic volume for Ontario in 2012. This implies approximately $8000 per truck per year in damages, which could inform an economic incentive for emission reduction. The provincial goal of 5% ZEV adoption would reduce GHG emissions in 2012 by 800 ktCO2e, yielding $89 Million (2010 USD) in cross-border benefits annually, with air quality co-benefits of $83/tCO2e. This result varies between −19% and 22% based on sensitivity analysis for travel and emissions models, though economic damages are likely the largest uncertainty source. Such advances in subnational scale integrated modeling of the environmental impacts of freight can offer insights into the sustainable design of clean freight policy and programs.  相似文献   

19.
Railway transportation is becoming increasingly important in many parts of the world for mass transport of passengers and freight. This study was prompted by the industry’s need to systemically estimate greenhouse gas emissions from railway construction and maintenance activities. In this paper, the emphasis is placed on plain-line railway maintenance and renewal projects. The objective of this study was to reduce the uncertainties and assumptions of previous studies based on ballasted track maintenance and renewal projects. A field-based data collection was carried out on plain-line ballasted track renewals. The results reveal that the emissions from the materials contribute more than nine times the CO2-e emissions than the machines used in the renewal projects. The results show that extending the lifespan of rail infrastructure assets through maintenance is beneficial in terms of reducing CO2-e emissions. Analysis was then carried out using the field data. Then the results were compared to two ballastless track alternatives. The results show that CO2-e emissions per metre from ballasted track were the least overall, however, the maintenance CO2-e emissions are greater than those of ballastless tracks over the infrastructure lifespan, with ballasted track maintenance emitting more CO2-e emissions at the 30 and 60 year intervals and the end of life when compared to the ballastless track types. The outcome of the study can provide decision makers, construction schedulers, environmental planners and project planners with reasonably accurate GHG emission estimates that can be used to plan, forecast and reduce emissions for plain-line renewal projects.  相似文献   

20.
Transportation sector accounts for a large proportion of global greenhouse gas and toxic pollutant emissions. Even though alternative fuel vehicles such as all-electric vehicles will be the best solution in the future, mitigating emissions by existing gasoline vehicles is an alternative countermeasure in the near term. The aim of this study is to predict the vehicle CO2 emission per kilometer and determine an eco-friendly path that results in minimum CO2 emissions while satisfying travel time budget. The vehicle CO2 emission model is derived based on the theory of vehicle dynamics. Particularly, the difficult-to-measure variables are substituted by parameters to be estimated. The model parameters can be estimated by using the current probe vehicle systems. An eco-routing approach combining the weighting method and k-shortest path algorithm is developed to find the optimal path along the Pareto frontier. The vehicle CO2 emission model and eco-routing approach are validated in a large-scale transportation network in Toyota city, Japan. The relative importance analysis indicates that the average speed has the largest impact on vehicle CO2 emission. Specifically, the benefit trade-off between CO2 emission reduction and the travel time buffer is discussed by carrying out sensitivity analysis in a network-wide scale. It is found that the average reduction in CO2 emissions achieved by the eco-friendly path reaches a maximum of around 11% when the travel time buffer is set to around 10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号